GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-1st/2nd • EXAMINATION - SUMMER 2016

Subject Code: 110009 Date:30/05/2016

Subject Name: MATHS-II

Time: 02:30 PM to 05:30 PM Total Marks: 70

Instructions:

- 1. Attempt any five questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Solve the following system of linear equation by using Gauss elimination x + y + 2z = 9; 2x + 4y 3z = 1; 3x + 6y 5z = 0
 - (b) (i) Find the inverse of a matrix $A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 2 \\ 2 & 1 & 1 \end{bmatrix}$ using row operation.
 - (ii) Check whether the set $W = \{a_0 + a_1x + a_2x^2 + a_3x^3 / a_0 = 0\}$ is a subspace of P_3 .
- Q.2 (a) Find the rank and nullity of the matrix $A = \begin{bmatrix} 3 & 4 & 5 & 6 & 7 \\ 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 7 & 8 & 9 \\ 10 & 11 & 12 & 13 & 14 \\ 15 & 16 & 17 & 18 & 19 \end{bmatrix}$
 - (b)
 (i) Define orthogonal matrix and verify $A = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{bmatrix}$ is an orthogonal **04**
 - matrix. (ii) Check whether the given vectors $v_1 = (1, -1, 1)$, $v_2 = (0, 1, 2)$, $v_3 = (3, 0, -1)$ forms a basis of \mathbb{R}^3
- Q.3 (a) Determine whether the following functions are linear transformation. Justify your answer.
 - (i) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ where T(x, y) = (x + 2y, 3x y)
 - (ii) Let $T: M_{nn} \to R$ where $T(A) = \det(A)$
 - (b) (i) Find the transition matrix from basis $B = \{(1,0), (0,1)\}$ of R^2 to basis **04** $B' = \{(1,1), (2,1)\}$ of R^2 .
 - (ii) Determine whether matrix $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ is one-to-one and onto. **03**
- **Q.4** (a) Prove that the set of all positive real numbers forms a vector space under the operations defined by vector addition: $x + y = x \square y$ and scalar multiplication: $\alpha x = x^{\alpha}$ for all $x, y \in R^{+}$.

- (b) (i) Determine whether the following polynomials span P_2 : $P_1 = 1 x + 2x^2 \; ; \; P_2 = 5 x + 4x^2 \; P_3 = -2 2x + 2x^2$
 - (ii) Show that $f_1 = 1$, $f_2 = e^x$, $f_3 = e^{2x}$ form a linearly independent set of vectors in $C^2(-\infty,\infty)$.
- Q.5 (a) Consider the basis $S = \{v_1, v_2\}$ for R^2 , where $v_1 = (-2,1)$ and $v_2 = (1,3)$ and Let $T: R^2 \to R^3$ be the linear transformation such that $T(v_1) = (-1, 2, 0)$ and $T(v_2) = (0, -3, 5)$. Find a formula for $T(x_1, x_2)$ and use that formula to find T(2, 3).
 - (b) (i) Reduce the quadratic form $Q(x, y) = x_1^2 + 4x_2^2 + x_3^2 4x_1x_2 + 2x_3x_1 4x_2x_3$ into canonical and find nature and signature.

(ii) Is
$$A = \begin{bmatrix} 0 & 2-3i & 1+i \\ -2-3i & 2i & 2-i \\ -1+i & -2-i & -i \end{bmatrix}$$
 a skew Hermition matrix?

- **Q.6** (a) Verify that the basis vectors $v_1 = \left(\frac{-3}{5}, \frac{4}{5}, 0\right)$, $v_2 = \left(\frac{4}{5}, \frac{3}{5}, 0\right)$ and $v_3 = (0, 0, 1)$ form an orthonormal basis S for R^3 with the Euclidean inner product. Express the vector u = (1, -1, 2) as a linear combination of the vectors v_1, v_2, v_3 and find coordinate vector $[u]_s$.
 - (b) (i) Find the orthogonal projection of u = (1, -2, 3) and v = (1, 2, 1) in R^3 with espect to

the Euclidean inner product.

(ii) Find
$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$$
 if $f(x) = 1 - x + x^2 + 5x^3$ and $g(x) = x - 3x^2$

- Q.7 (a) Find a matrix P that diagonalize the matrix $A = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$ hence find A^{10} .
 - (b) (i) Determine algebraic and geometric multiplicity of each eigen value of the matrix $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$.

(ii) If
$$A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$
 then find the eigenvalues of A^2 and A^{-1} .
