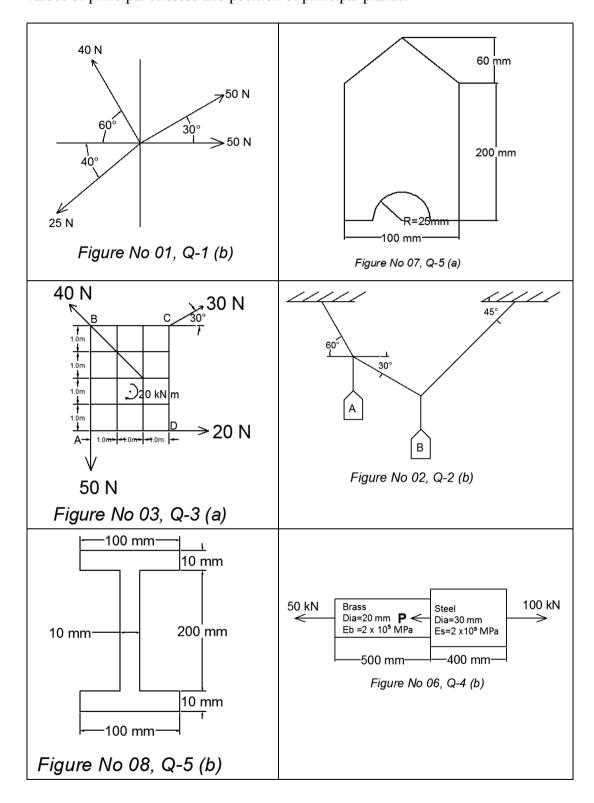
Seat No Enforment No	Seat No.:	Enrolment No
----------------------	-----------	--------------

GUJARAT TECHNOLOGICAL UNIVERSITY BE/PDDC- SEMESTER- 1st / 2nd • EXAMINATION – SUMMER 2016


Date: 10/06/2016

Subject Code: 110010

Subject Name: Mechanics of Solids

		2: 2: 30 PM to 5:00 PM ctions: 1. Attempt any five questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks.	
Q.1	(a)	Explain in brief (i) Resultant of a force system (ii) Law of Parallelogram (iii) Lami's theorem	07
	(b)	A force system is shown in <i>Figure No.01</i> , Find the resultant of the system and check the answer by law of Polygon.	07
Q.2	(a)	(i) State Varigon's theorem and give the application of theorem(ii) State the conditions of equilibrium for different types of force systems.	03 04
	(b)	Two buckets are suspended by a flexible wire as shown in <i>Figure No.02</i> . The weight of bucket is $B\ 200\ N$, if the system is in equilibrium, find the weight of bucket A and force in each part of the wire. Neglect self weight of wire.	07
Q.3	(a)	Find the resultant of a non- concurrent coplanar force system shown in <i>Figure No.3</i> and locate the resultant with respect to point <i>A</i> .	07
	(b)	A beam is loaded as shown in <i>Figure No. 04</i> , Find the reactions at supports for beam.	07
Q.4	(a)	A beam is loaded as shown in <i>Figure No. 05</i> , Find the reactions at Support and draw the shear force and bending moment diagram for the beam, Also determine the maximum bending moment.	07
	(b)	A composite stepped bar made of Brass and Steel as shown in <i>Figure No. 06</i> , is subjected to various loads is in equilibrium, Find the unknown force P and total change in length of the bar.	07
Q.5	(a) (b)	Locate the centroid of a plain lamina shown in <i>Figure no. 07</i> . Determine moment of inertia of section shown in <i>Figure No.8</i> about centroidal axes (X and Y both)	07 07
Q.6	(a)	State and explain with figure Pappu's -Guildinu's theorem of surface area of Revolution	07
	(b)	Draw the shear stress distribution diagram over the section shown in <i>Figure No. 08</i> if it is subjected to maximum shear force of 100 kN.	07
Q.7	(a)	A uniform ladder of weight 400 N and length 6 m is placed against a smooth vertical wall such that it makes an inclination of 60° with floor. A person of weight 800 N climbs the ladder. At what position of the person the ladder will start to slip. Take coefficient of friction between floor and ladder is 0.25.	07

(b) At a point in a strained material two mutually perpendicular tensile stress of 5 N/mm² and 8 N/mm² and shear stress 2 N/mm² are acting as shown in *Figure No. 09*. Find the values of principal stresses and position of principal planes.

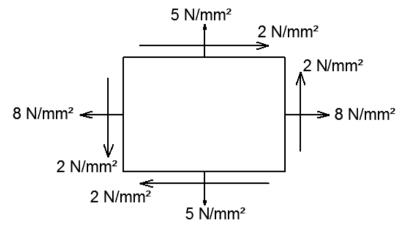


Figure No 09, Q-7 (b)

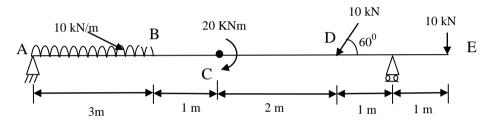


Figure No-4 Q-3 (b)

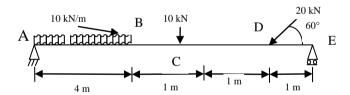


Figure No-5 Q-4 (a)

......