Seat No.: _____

Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-1st/2nd • EXAMINATION - SUMMER 2016

Subject Code: 110015 Date:30/05/2016

Subject Name: Vector Calculus and Linear Algebra

Time: 02:30 PM to 05:30 PM Total Marks: 70

Instructions:

- 1. Attempt any five questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) (i) Using Gauss-Jordan method find A^{-1} for $A = \begin{bmatrix} 0 & 1 & -1 \\ 3 & 1 & 1 \\ 1 & 2 & -1 \end{bmatrix}$, if exists. 03
 - (ii) Solve the linear system $3x_1 x_2 + x_3 + 2x_4 = -2$; $x_1 + 2x_2 x_3 + x_4 = 1$; $-x_1 3x_2 + 2x_3 4x_4 = -6$; by Gauss elimination method.
 - (b) (i) Is the vector $\overline{v} = (1,1)$ is a linear combination of the vectors 03 $\overline{v_1} = (-2,4)$ and $\overline{v_2} = (3,-6)$? Justify.
 - (ii) Determine whether the subset $S = \{(x_1, x_2, x_3) / x_1 + x_3 = -2\}$ of \mathbb{R}^3 is a subspace.
- Q.2 (a) (i) Find the rank of a matrix $A = \begin{bmatrix} 1 & 2 & 0 & -1 \\ 3 & 4 & 1 & 2 \\ -2 & 3 & 2 & 5 \end{bmatrix}$.
 - (ii) Determine whether the set of polynomial $\{2, x, x^2, 3x 1\}$ is linearly independent or linearly dependent.
 - (b) (i) Find the angle between the two vectors $\overline{u} = (2, -2, 3)$ and 03 $\overline{v} = (-1, 2, 2)$.
 - (ii) Determine whether $V = \mathbb{R}^2$ is an inner product space under the inner product $\langle \overline{u}, \overline{v} \rangle = u_1 v_1 2u_1 v_2 2u_2 v_1 + 3u_2 v_2$.
- Q.3 (a) (i) Determine whether the mapping $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (e^x, e^y)$ is a 03 linear or not.
 - (ii) Determine whether the linear transformation **04** $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x, y) = (4x y, x) is one-to-one.
 - (b) Let $V = \{(a,b)/a, b \in \mathbb{R}\}$. Let $\overline{v} = (v_1, v_2)$ and $\overline{w} = (w_1, w_2)$. Define $(v_1, v_2) + (w_1, w_2) = (v_1 + w_1 + 1, v_2 + w_2 + 1)$ and $k(v_1, v_2) = (kv_1 + k 1, kv_2 + k 1)$. Verify that V is a vector space
- Q.4 (a) (i) Let $V = P_2$ with inner product define by $\langle p,q \rangle = \int_0^1 p(x)q(x)dx$. 03 Find $\langle p,q \rangle$ where $p(x) = 1 x^2$; $q(x) = 1 x + 2x^2$.
 - (ii) Show that the set of polynomials $S = \{x^2 + 2x + 1, x^2 + 2, x\}$ spans the vector space P_2 .
 - (b) Verify the Green's theorem for $\oint_C (y^2 dx + x^2 dy)$ where C is triangle bounded by x = 0, x + y = 1 and y = 0.
- Q.5 (a) (i) If $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$, Prove that $\nabla^2 r^n = n(n+1)r^{n-2}$. (ii) Find the directional derivative of $\varphi = x^2 y^2 + 2z^2$ at the point P(1,2,3) in the direction of the line PQ where Q is the point (5,0,4).

- **(b)** Find the matrix **P** that diagonalizes the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 1 \\ 1 & -2 & 1 \end{bmatrix}$. **07**
- (i) If \overline{u} and \overline{v} are vectors in \mathbb{R}^n then prove that $||\overline{u} + \overline{v}|| \le ||\overline{u}|| + ||\overline{v}||$. **Q.6** 03 (a)
 - (ii) Show that $\overline{F} = 2xyz\overline{i} + (x^2z + 2y)\overline{i} + x^2y\overline{k}$ is conservative. Find its 04 scalar potential function Ø.
 - (b) Let B be the basis for \mathbb{R}^3 given by $B = \{(1,1,1), (-1,1,0), (-1,0,1)\}$. Apply **07** the Gram-Schmidt process to B to find an orthonormal basis for \mathbb{R}^3 .
- (i) Let $V = \mathbb{R}^2$ with inner product defined by $\langle \overline{u}, \overline{v} \rangle = u_1 v_1 + 3u_2 v_2$. **Q.7** (a) 03 Let $\overline{u} = (2, -2)$ and $\overline{v} = (1,4)$. Verify that the Cauchy-Schwartz inequality is upheld.
 - 04
 - (ii) Find the basis for the row and column space of $A = \begin{bmatrix} 1 & 4 & 5 & 2 \\ 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 2 \end{bmatrix}$. Consider the basis $B = \{v_1, v_2, v_3\}$ for \mathbb{R}^3 where $v_1 = (1,1,1), v_2 = (1,1,0), v_3 = (1,0,0)$ and let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation such that $T(v_1) = (1,0), T(v_2) = (2,-1), T(v_3) = (4,3)$. Find (b) Consider **07** a formula for $T(x_1, x_2, x_3)$ and use the formula to find T(2, -3, 5).
