Seat No.:

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III EXAMINATION - SUMMER 2016

Subject Code:130502 **Subject Name: Fluid Flow Operation** Time:10:30 AM to 01:00 PM Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 Define following **(a)**
 - Fluid (i)
 - Hydraulic radius **(ii)**
 - Schedule No. (iii)
 - Mach No. (iv)
 - **(v)** Cavitation
 - (vi) NPSH
 - (vii) Venna contracta
 - Write assumptions and derive Bernouli's equation without corrections for a **(b)** 07 stream tube of increasing cross section and increasing elevation.
- Discuss the concept of hydrostatic equilibrium and derive mathematical 0.2 (a) 07 condition of hydrostatic equilibrium.
 - Explain in detail the behavior of Newtonian and non Newtonian fluid with **(b)** 07 suitable example and neat sketch.

OR

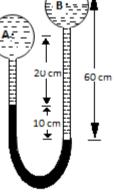
A differential manometer is connected between two points **(b)** as shown in figure. At point B, air pressure is 9.81×10^4 N/m^2 (abs). Oil (Sp. gr. =0.9) and water are flowing through points A and B respectively. Manometric fluid is mercury(Sp.gr.=13.6). Find absolute pressure in N/m^2 at point A.

- **Q.3** Derive Hagen-Poiseuille equation (a)
 - Explain fully developed flow. Also discuss concept of transition length for 07 **(b)** laminar and turbulent flow.

OR

- Q.3 Briefly describe the construction and working of orifice meter and derive 07 (a) expression for orifice coefficient
 - An orifice meter with a sharp edge and orifice size of 50 mm is being used to 07 **(b)** measure volumetric flow rate of water in a pipe line of 250 mm i.d. If a mercury manometer reads 242 mm difference, calculate the volumetric flow rate. Density of water=1000 kg/m³, density of mercury= 13,600 kg/m³, viscosity of water = 1.0 mPa s.

20 cn


07

07

07

Date:04/06/2016

Enrolment No.

Q.4	(a) (b)	Discuss in detail about gate valve and globe valve. Acetic acid is pumped though a 75 mm internal diameter pipe with volumetric flow rate of 0.015 m3/s. Viscosity of acid is 2.5 kg/(m s), density of acid = 1060	07 07
		kg/m ³ .	
Q.4	(a) (b)	OR What is cavitation? Derive equation for NPSH. Draw neatly and discuss characteristic curves of centrifugal pump.	07 07
Q.5	(a)	Explain any one method of dimensional analysis.	07
-	(b)	60 % sulfuric acid is to be pumped through a 25 mm i.d. pipe at a rate of 4000 cm ³ /s. It is desired to discharge the sulfuric acid to an intermediate storage tank located to a height of 25 m. The pipe is 30 m long and includes two right angle bends. Calculate the power required by pump if pump efficiency is 56%? Specific gravity of sulfuric acid =1.531, kinematic viscosity = 0.425 cm ² /s, head loss	07
		through 90° bend = 0.8 of velocity head, Fanning friction factor= 0.0094.	
		OR	
Q.5	(a)	Write a short note on centrifugal decanter.	07
	(b)	Write a note on types of Fluidization and applications of Fluidization	07
