GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V- EXAMINATION - SUMMER 2016

Date: 21/05/2016

Subject Code: 150102

Subject Name: Fundamentals of Turbo M/cs

		ne: 02:30 PM to 05:00 PM ructions: 1. Attempt all questions. 2. Make suitable assumptions wherever necessary.	
		3. Figures to the right indicate full marks.	
Q.1	(a) (b)	With a neat sketch explain the h-s diagram for axial turbine stage. With a neat sketch explain the h-s diagram for axial compressor stage.	07 07
Q.2	(a)	Derive the expression for the maximum utilization factor for fifty percent reaction stage.	07
	(b)	Explain losses in turbomachines. OR	07
	(b)	Explain the phenomenon of slip in centrifugal compressor. What is slip factor? How it affects the actual work done and efficiencies of the centrifugal compressor.	07
Q.3	(a)	Explain pressure compounding and velocity compounding in multistage axial turbines.	07
	(b)	Explain steps for matching of turbine and compressor for a jet engine. OR	07
Q.3	(a)	Define degree of reaction and derive the expression for the same. Define the low	07
	(b)	reaction stage and high reaction stage. How the radial turbine differs than axial turbine? Show the entry and exit velocity triangle for a general inward flow radial turbine stage.	07
Q.4	(a)	How the spouting velocity is to be defined? Derive the expression for the stage efficiency for the radial turbine stage in terms of pressure ratio and loading coefficient.	07
	(b)	What is an equilibrium diagram? How to find out the equilibrium points from the characteristic curves?	07
		OR	
Q.4	(a)	Classify and explain the turbo machines with respect to flow direction, types of fluid and degree of reaction.	07
	(b)	Draw and explain the velocity triangle for stage of axial compressor.	07
Q.5	(a) (b)	What is radial equilibrium? Derive the equation for radial equilibrium. With the help of diagram, explain the various components of centrifugal compressor. Also explain role of various components.	07 07
		OR	
Q.5	(a) (b)	Explain choking in turbomachines. Define following terms. 1. Turbomachines 2. Degree of reaction 3. Utilization factor 4. Blade efficiency 5. Flow coefficient 6. Speed ratio 7. Work done factor	07 07
