GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V- EXAMINATION - SUMMER 2016

Subject Code: 150104

Date: 06/05/2016

Subject Name: Computational Fluid Dynamics-1 Time: 02:30 PM to 05:00 PM

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a) (b)	Discuss forward difference and backward difference in detail with diagram. Differentiating between explicit approach and implicit approach for the solution of difference equations. Formulate the explicit form for 1-D heat conduction equation.	07 07
Q.2	(a) (b)	Explain the aspects of discretization. Explain the concept Maccormack's Technique for linear equations and state the concept of stability and consistency	07 07
	(b)	OR Write a short note on computational fluid dynamics as a research tool.	07
Q.3	(a)	Consider the viscous flow of air over a flat plate. Variation in velocity with respect to y is given as $u=1582(1-e^{\frac{-y}{L}})$, where L= 1 unit and $\mu=3.37\times10-7$ slug/ (ft.s). y is from 0 to 0.3 in the steps of 0.1. Find the percentage error in shear stress, involved in 1st ordered and 2nd ordered difference compared to exact solution.	07
	(b)	Derive the differential equation to unsteady 1-D heat conduction equation. Also define the accurate solution and precise solution OR	07
Q.3	(a) (b)	Explain in brief the momentum equation Explain the substantial derivative in brief.	07 07
Q.4	(a) (b)	Explain the inviscid flow of Euler equations. Describe the model of an infinitesimally small fluid element moving with the flow in brief.	07 07
Q.4	(a)	OR List out the fundamental physical principles of fluid flow. With a neat sketch explain the models of fluid flow and derive the continuity equation for the model of an infinitesimally small element fixed in space	07
	(b)	Explain the general methods of determining the classification of PDEs	07
Q.5	(a)	Define adiabatic wall temperature. Also explain physical boundary conditions for a viscous flow.	07
	(b)	Explain the setup of purely subsonic isentropic nozzle.	07
Q.5	(a)	Write a short note on grid generation.	07
	(b)	Write a short note on shock fitting and shock capturing methods	07