1

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI- EXAMINATION - SUMMER 2016 Date:11/05/2016

Subject Code: 160505

Subject Name: Computer Aided Process Synthesis Time: 10:30 AM to 01:00 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 0.1 (a) Discuss scope of heat and power integration in chemical process plant using the 07 concept of heat engine and heat pump.
 - Define span and cycle time for batch processes. Explain various transfer policies 07 **(b)** with example.
- **Q.2** Discuss design opportunities and steps in product and process design. (a)
 - Draw the algorithm to establish the distillation column pressure and condenser 07 **(b)** type.

OR

List the heuristics for determining favorable sequence of distillation operation. **(b)** 07

Q.3 Formulate the LP model for following data. Take $\Delta T_{min} = 10 \text{ }^{\circ}\text{F}$. **(a)**

Source Target M x C_p Stream Temperature ^oF Temperature ^oF Btu/hr ^oF C1 120 235 2 C2 180 240 4 3 260 160 H1 250 130 1.5 H2

(b) Explain the generalized rules for stream splitting on both sides of the pinch to 07 satisfy MER requirements.

OR

- Discuss approach used by Linhof and Hindmarsh for stream matching at pinch. 07 0.3 (a)
 - Find pinch point and minimum hot and cold utilities required for the following 07 **(b)** system for $\Delta T_{min} = 10 \ ^{\circ}C$

Stream	T _{in} °C	Tout °C	FC _p kW/ºC
C1	60	180	3
C2	30	100	2
H1	180	40	2
H2	150	40	4

- Discuss environmental issues and factors affecting the product and process design. **Q.4** 07 (a)
 - Write a short note on Threshold approach temperature and optimum approach 07 **(b)** temperature for HENS.
 - OR
- Products A, B, C are manufactured in three stages. The processing time for stage 1, 07 **0.4** (a) 2 and 3 for product A are 5, 4 and 3 hr respectively, for product B are 3, 1 and 3 hr respectively and for product C are 4, 3 and 2 respectively. Assuming zero cleanup time, determine the span and cycle time for manufacturing of 2 batches of A,1 of B and 1 of C for (a) zero wait policy, (b)no intermediate storage policy and (c) unlimited intermediate storage policy. 07
 - Write a Short note on the role of computers in product and process design. **(b)**

Total Marks: 70

Enrolment No.

07

07

- Q.5 (a) Explain the five steps procedure for construction of Attainable region.
 - (b) What are the residue curves? Draw the residue curves for a system containing octane, ethylbenzene and 2-ethoxyethanol with boiling point 398.8 K, 409.2 K and 408.1 K respectively. 2-ethoxyethanol makes binary azeotrope with octane and ethylbenzene at 389.1 K and 400.1K respectively.

OR

Q.5 (a) Use the marginal vapor rate (MV) method to determine a sequence for the 07 separation of alcohol mixture. Give rank to various sequences.

Separatio n	MV (mol/sec)	Separatio n	MV (mol/sec)
A/BCDE	12.3	BC/DE	8.0
AB/CD	14.6	BC/D	1.3
AB/CDE	18.6	BCD/E	2.8
ABC/D	3.7	A/BC	2.6
ABC/DE	10.4	A/BCD	9.1
C/DE	6.7	AB/C	5.4
ABCD/E	4.3	A/B	0
CD/E	2.0	B/C	0
B/CDE	13.3	C/D	0
B/CD	9.3	D/E	0

(b) Discuss reactor designs used for handling large adiabatic changes in temperature. 07

2