Seat No.:	Enrolment No.

Subject Code:170804

Instructions:

Time:02:30 PM to 05:00 PM

1. Attempt all questions.

Subject Name:Discrete Time Signal Processing

2. Make suitable assumptions wherever necessary.

3. Figures to the right indicate full marks.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII EXAMINATION - SUMMER 2016

Date:18/05/2016

Total Marks: 70

Q.1	(a)	Explain Classification of Signals.	07
	(b)	Perform linear convolution for following two sequences: $x[n] = \{1, -2, 3\}$ and $h[n] = \{0, 0, 1, 1, 1, 1\}$	07
Q.2	(a)	For the system described by the sequence y[n] = x[n²], determine for the following conditions: (i) Time Invariance (ii) Causality (iii) Stability (iv) Linearity.	07
	(b)	Find out total solution of following difference equation with initial condition $y [-2] = 25$ and $y [-1] = 6$.	07
		$y[n] - \frac{5}{6}y[n-1] + \frac{1}{6}y[n-2] = 5^{-n} n \ge 0$	
		OR	
	(b)	Prove: (i) For stable LTI system, the impulse response must be summable. (ii) For causal LTI system, h[n] = 0, n<0.	07
Q.3	(a)	Find out Z – transform for $x[n] = a^n \cos(\omega_0 n) u[n]$.	07
	(b)	What do you mean by the Region of Convergence of Z - transform? Explain various properties of ROC.	07
		OR	
Q.3	(a)	What is frequency domain sampling? What is the condition for avoiding aliasing for the reconstructed spectrum of the sampled sequence?	07
	(b)	Find Inverse Z – transform of given X(z) for ROC: $ z > 4$ $X(z) = \frac{z(z-3)}{(z-4)(z^2 - 3z + 2)}$	07
Q.4	(a)	Enlist the properties of DFT. Prove any two properties.	07
ζ	(b)	Find out the circular convolution of following Sequences:	07
	(6)	$x[n] = \{1, 0, 3, 2, 5, 1\}, y[n] = \{5, 6, -2, 3, -1, 2\}$	07
		OR	
Q.4	(a)	What do you understand by FIR digital filter? Explain in brief FIR digital filter design using windowing techniques.	07
	(b)	What are different specifications required to design a low pass IIR digital filter? Compare IIR digital filter design using the Butterworth and Chebyshev approximations.	07

Q.5	(a)	Explain Radix- 2 FFT Algorithm. Why it is called decimation-in-time	07
	(b)	Compare FIR and IIR filters.	07
		OR	
Q.5	(a)	Compute IDFT for the sequence $X[k] = \{2, 1+j, 0, 1-j\}$.	07
	(b)	Explain Impulse Invariance and bilinear transformation techniques of IIR filter design.	07
