Sea	t No.:	Enrolment No.	
		GUJARAT TECHNOLOGICAL UNIVERSITY	
		BE - SEMESTER-VII EXAMINATION – SUMMER 2016	
Su	bject	Code:171003 Date:10/05/201	6
Su	bject	Name:Digital Signal Processing	
Tiı	ne:02	2:30 PM to 05:00 PM Total Marks: '	70
Inst	tructio	ons:	
	1.	Attempt all questions.	
	2. 3.	Figures to the right indicate full marks.	
Q.1	(a)	Determine if the systems described by the following input-output relations are	07
-		causal or non-causal.	
		(i) $y(n) = x(n)-x(n-1)$ (ii) $y(n) = ax(n)$	
		(iii) $y(n) = x(n) + 3x(n+4)$ (iv) $y(n) = x(-n)$.	
	(h)	Also give an example of L11 system. Determine if the systems described by following input-output relations are	07
	(0)	linear or non-linear.	07
		(i) $y(n)=nx(n)$ (ii) $y(n)=x(n^2)$	
		(iii) $y(n)=Ax(n)+B$ (iv) $y(n)=x^{2}(n)$	
		Also give an example of stable system.	
Q.2	(a)	Determine the z-transform of the signals $\cos \omega_0 n u(n)$ and $\sin \omega_0 n u(n)$.	07
	(b)	Determine the inverse-z transform of the function $X(z) = \log(1+az^{-1})$.	07
	(b)	UR	07
	(0)	X(z) = 1 , $ z > 1$	07
		$(1-1.5z^{-1}+0.5z^{-2})$	
Q.3	(a)	Convert the analog filter with system function $s+0.1$	07
c		H(s)=	
		$(s+0.1)^2+9$	
	(b)	Into a digital IIR filter by means of the impulse invariance technique.	07
	(0)	OR	07
Q.3	(a)	Compare FIR and IIR filters.	07
	(b)	List the steps involved in design of an FIR filter using Kaiser window.	07
Q.4	(a)	By means of DFT and IDFT, determine the circular convolution of two	07
-		sequences $x_1(n) = \{1, 2, 3, 4\}$ and $x_2(n) = \{2, 1, 2, 1\}$.	
	(b)	State and prove time reversal property of the DFT.	07
0.4	(\mathbf{a})	OR Cive percellel form realization for system function	07
Q.4	(a)	$-14\ 75-12\ 90\ z^{-1}$ 24 50 +26 82 z^{-1}	07
		H(z) =++	
		$1-(7/8) z^{-1}+(3/32)z^{-2}$ $1-z^{-1}+0.5 z^{-2}$	
	(b)	Draw Direct form-I and Direct form-II realizations for any IIR system.	07
Q.5	(a)	What is FFT ? How do we save number of computations in Decimation-in-time	07
-		algorithm?	
	(b)	Draw first stage of decimation-in-frequency FFT algorithm.	07
05	(a)	UR Give salient features of DSP architecture	07
Q.3	(a) (b)	Compare undersampling and oversampling from frequency domain analysis	07
		point of view.	