	•	BE - SEMESTER-VII EXAMINATION – SUMMER 2016 Code:171704 Date:18/05/202 Name:Digital Signals & Systems	16	
Time:02:30 PM to 05:00 PM Instructions:		2:30 PM to 05:00 PM Total Marks:	Total Marks: 70	
	2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a)	Explain the detail classification of signals and respective mathematical representation.	07	
	(b)	Determine the zero state response of second order system described as difference equation $y(n) - 3y(n - 1) - 4y(n-2) = x(n) + 2x(n - 1)$, where $x(n) = 4n u(n)$	07	
Q.2	(a) (b)	Explain with suitable example recursive and non-recursive system Prove the following properties of z transform. 1. Convolution 2. Initial value theorem	07 07	
		OR		
	(b)	Prove the following properties of z transform.1. Perseval's relationship2. Differentiation	07	
Q.3	(a)	Find out Z transform of following signal 1. X(n)=-n a _n u(-n) 2. X(n)=n2 u(n)	07	
	(b)	Explain various properties of ROC.	07	
Q.3	(a)	OR For a given discrete time systems, check whether they are: (1) Static or dynamic (2) Linear or non-linear (3) Shift invariant or shift-varying (4) Causal or non-causal (5) Stable or unstable Explain with reasons:	14	
		(i) $e^{x(n)}$ (ii) $x(2n)$ (iii) $x(-n-1)$		
Q.4	(a)	Perform circular convolution of following signal $x1(n)=\{5,4,3,2,1\}$, $x2(n)=\{1,1,2,2\}$	07	
	(b)	Find out the linear convolution of two sequences $X(n) = \{1,2,1,-1\}, h(n) = \{1,2,3,1\}$	07	
Q.4	(a)	OR Find out inverse z transform of $X(z) = 1+z^{-1} / 1-z^{-1} + 0.5z^{-2}$	07	
	(b)	Determine the z-transform and sketch the ROC of $x(n) = (1/2)n\{u(n)-u(n-10)\}$	07	
Q.5	(a) (b)	Narrate the properties of DFT. Derive the frequency sampling structures of IIR filters.	07 07	
Q.5	(a) (b)	OR Compute 4 point DFT of the given sequence x[n]={1,0,1,0} Explain oversampling of D to A converter	07 07	
