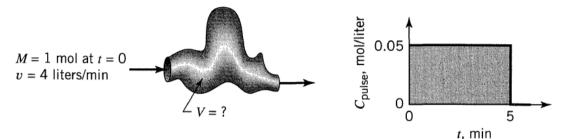
GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VIII EXAMINATION – SUMMER 2016

: 180501 Date: 10/05/2016

Subject Code: 180501


Subject Name: Chemical Reaction Engineering - II

Time: 10:30 AM to 01:00 PM

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Describe step and impulse input test for determining exit age distribution in non-ideal 07 chemical reactors.
 - (b) A pulse input to a vessel gives the results shown in below figure:

- (1) Check the material balance with the tracer curve to see whether the results are consistent.
- (2) If the result is consistent, determine mean residence time \bar{t} , volume of reactor V and sketch the **E** curve.
- **Q.2** (a) A pulse tracer test gives the following output curve:

Time, t, min	0	10	20	30	40	50	60	70
Concentration, C, mol/liter	35	38	40	40	39	37	36	35

(1) Draw C versus t curve, and find the area under the C versus t curve.

(2) Draw E versus t curve.

- (3) Calculate the mean residence time and variance of the E curve.
- (b) Write a short note on Dispersion Model.

OR

- (b) Derive Residence Time Distribution Function (RTD) for Tank-in Series model for **07** N-number of CSTR in series.
- Q.3 (a) Derive the rate equation for straight mass transfer (Absorption) of A in fluid-fluid 07 reaction.
 - (b) Describe all eight cases for mass transfer and reaction for fluid-fluid reactions with neat 07 sketch.

OR

- Q.3 (a) Define Enhancement factor and Hatta Modulus for fluid-fluid reactions.
 - (b) Differentiate between Progressive Conversion Model (PCM) and Shrinking Core Model 07 (SCM) for fluid-particle reactions.
- Q.4 (a) Derive the time-conversion-radius relationship for shrinking-core model for spherical 07 particles of unchanging size when diffusion through gas film controls.
 - (b) Describe in details the role of temperature, time, and particle size in determining the rate 07 controlling step for fluid-particle reactions.

07

07

07

- Q.4 (a) Derive the time-conversion-radius relationship for shrinking-core model for spherical 07 particles of unchanging size when chemical reaction controls.
 - (b) Spherical solid particles containing B are roasted isothermally in an oven with gas of 07 constant composition. Solids are converted to a form non-flaking product according to the SCM as follows:

$$A_{(g)} + B_{(s)} \rightarrow R_{(g)} + S_{(s)}$$

C_A=0.01 kmol/m³

The density of solid B is 20 kmol/m³. From the following conversion data (by chemical analysis) or core size data (by slicing and measuring) determine the rate controlling mechanism for the transformation of solid,

dp, mm	XB	t, min
1	1.0	4
1.5	1.0	6

- Q.5 (a) What is effectiveness factor? Derive a relationship between effectiveness factor and 07 Thiele Modulus for first order reaction.
 - (b) Define with suitable examples,
 1) Promoter, 2) Inhibitor, 3) Carrier, 4) Accelerator, 5) Activity, 6) Coking/fouling

OR

- **Q.5** (a) Discuss: physical adsorption and chemisorption.
 - (b) Describe with neat sketch the fixed bed reactor and fluidized bed reactor.

07

07

07