Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VIII EXAMINATION - SUMMER 2016

Subject Code:181303

Date:07/05/2016

Subject Name: Treatment Process Design and Drawing

Time:10:30 AM to 01:00 PM

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- Make suitable assumptions wherever necessary. 2.
- 3. Figures to the right indicate full marks.
- **Q.1** Design a continuous flow completely-mixed activated sludge process to yield 14 (a) an effluent BOD₅ of 20 mg/L and suspended solids of 23 mg/L. The influent BOD₅ following primary clarification is 200 mg/L. The waste flow is 0.2 m^{3} /sec. Take Y = 0.65, kd = 0.05, $\theta c = 10$ days, MLVSS = 3000 mg/L, returnsludge concentration as 15000 mg/L of suspended solids and MLVSS ratio = 0.8.
- Q.2 (a) Define: Flow through velocity, settling velocity, overflow rate, volumetric 07 loading, solids retention time, food-microorganism ratio, weir loading rate
 - Draw a neat sketch of wastewater treatment plant treating municipal wastewater 07 **(b)** along with the unit processes and unit operations involved at each level of treatment

OR

- **(b)** Enlist the design steps for screen
- Q.3 Design a secondary settling tank of an activated sludge treatment plant for 45 07 **(a)** mld (peak flow) operating with an MLSS of 3000 mg/L. 07
 - **(b)** Write the procedure to design a clariflocculator

OR

- Q.3 Draw a neat sketch of venturi scrubber (a)
 - Calculate the no. of trains, no. of stages, overall organic loading, hydraulic 07 **(b)** loading of a rotating biological contactor for the flow of 4000 m^3/d having BOD, soluble BOD and TSS of 140, 90 and 70 mg/L respectively. The effluent leaving the unit should possess the characteristics as BOD = 20 mg/L, soluble BOD = 10 mg/L and TSS = 20 mg/L.
- Design an upflow anaerobic sludge blanket reactor that removes 90% COD **Q.4** 14 (a) from the influent wastewater having 1 MLD flow. Assume both non-soluble portion of influent COD and biodegradable fraction of influent VSS = 60%. The following data are given: Influent COD = 1300 mg/L, influent soluble COD = 1000 mg/L, VSS = 200 mg/L, effluent volatile suspended solids = 120 mg/L, Y = 0.08, Kd = 0.03 d⁻¹, K $= 4.375 \text{ d}^{-1}$, Ks = 160 mg/L.

OR

A sharp filter sand has the sieve analysis shown below. The porosity of the 14 **Q.4** (a) unstratified bed is 0.39 and that of the stratified bed is 0.42, the lowest temperature anticipated of the water to be filtered is 4 °C. Find the head loss if the sand is to be used in (i) a slow-sand filter 30 in. deep operated at superficial velocity of 1.08*10⁻⁴ m/s and (ii) a rapid-sand filter 30 in. deep operated at superficial velocity 0.00135 m/s. assume volume shape factor as 0.77

07

07

Sieve size	Average size (mm)	Xi
14-20	1.0	0.01
20-28	0.70	0.05
28-32	0.54	0.15
32-35	0.46	0.18
35-42	0.38	0.18
42-48	0.32	0.20
48-60	0.27	0.15
60-65	0.23	0.07
65-100	0.18	0.01

Q.5	(a)	Design a cyclone separator of maximum particle collection efficiency for 50000	07
		m ³ /hr of gas stream at 100 °C temperature. Consider the gas to be releasing 600	
		g/s of dust. Dust mean diameter is 12 μ m and the density of particle is 1500	
		kg/m ³ . Take density and viscosity of gas as 1500 kg/m ³ and $2.1*10^{-5}$ kg/m.s	
	(b)	Discuss the design criteria of membrane bioreactor	07

		OR	
Q.5	(a)	Write a short note: flow measuring devices	07
	(b)	What are the factors affecting choice of treatment process?	07
