Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VIII EXAMINATION - SUMMER 2016

Subject Code:183502 Date:05/05/2016 Subject Name: Chemical Kinetics & Reaction Engineering Time:10:30 AM to 01:00 PM **Total Marks: 70** Instructions: 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. (a) An irreversible series reaction $A \rightarrow B$ is taking place in a constant volume batch Q.1 07 reactor with rate expression $-r_A = kC_A^2$. Derive an expression to determine kinetics of this reaction. 07 **(b)** Explain Arhenious theory of temperature dependency along with activation energy and temperature sensitivity of reaction. **Q.2 (a)** 1) Liquid A decomposed by first-order kinetics, and in a batch reactor 50 % of A is 05 converted in a 5-min run. How much longer it take to reach 75 % conversion? 02 2) Define molecularity and order of reaction. Explain reaction of shifting orders. Derive expression to determine its kinetics. 07 **(b)** OR Explain Autocatalytic reactions. Derive expression to determine its kinetics. 07 **(b)** 0.3 **(a)** Write short note on classification of chemical reactions useful in reactor design. 07 Explain variable volume reactor. Derive its expression to find kinetics for first order **(b)** 07 reaction. OR 0.3 Define reaction rate. Give various forms of rate equation. 07 (a) **(b)** Gaseous reactant A decomposes as follows: 07 $A \rightarrow 3R$ $-r_{\rm A} = (0.6 \text{ min}^{-1}) C_{\rm A}$ Find the conversion of A in a 50% A–50% inert feed ($v_0 = 180$ liter/min, $C_{A0} = 300$ milimol/liter) to a 1 m³ mixed flow reactor. **Q.4** Write down steps for differential method of analysis and compare it with integral 07 **(a)** method of analysis. Consider a feed $C_{A0} = 100$, $C_{B0} = 200$, $C_{i0} = 100$ to a steady-flow reactor. The 07 **(b)** isothermal gas-phase reaction is $A+3B \rightarrow 6R$. If $C_A = 40$ at the reactor exit, what is C_B , X_A , and X_B there? OR What do you understand by instantaneous fractional yield and overall fractional 07 0.4 **(a)** yield of a product? Explain different contacting patterns for different concentration of reactant for non-continuous operations.

- 07 Explain half life method to determine kinetics of reaction. **(b)**
- Q.5 **(a)** Define ideal reactors. Explain the importance of reactor design with broad 07 classification of reactor types. 07
 - (b) Write a short note on optimum temperature progression.

- Q.5 (a) Starting from the first principles, obtain a design equation for Plug flow reactor.
 - (b) Write a short note on "Determination of Surface area for catalysts".
