GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III(New) EXAMINATION – SUMMER 2016

Subject Code:2130002 Date:07/06/2016 Subject Name: Advanced Engineering Mathematics Time:10:30 AM to 01:30 PM **Total Marks: 70 Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. Q.1 Answer the following one mark each questions : 14 1 Integreating factor of the differential equation $\frac{dx}{dy} + \frac{3x}{y} = \frac{1}{y^2}$ is _____ The general solution of the differential equation $\frac{dy}{dx} + \frac{y}{x}$ 2 =tan2x The orthogonal trajectory of the family of curve x^2 + 3 $v^2 = c^2$ is Particular integral of $(D^2 + 4)y = \cos 2x$ is _____ 4 5 X=0 is a regular singular point of $2x^2y'' + 3xy'(x^2 - 4)y = 0$ say true or false. 6 The solution of 7 State the type ,order and degree of differential equation $\left(\frac{dx}{dx}\right)^2 + 5y^{\frac{1}{3}} = x$ is _____ 8 Solve $(D+D')z = \cos x$ 9 Is the partial differential equation $2\frac{\partial^2 u}{\partial x^2} + 4\frac{\partial^2 u}{\partial x \partial y} + 3 \frac{\partial^2 u}{\partial y^2} = 6$ elliptic? 10 $L^{-1}\left(\frac{1}{(s+a)^2}\right) =$ _____ If f(t) is a periodic function with period t 11 then L[f(t)] =_____ Laplace transform of f(t) is defined for +ve and -ve 12 values of t. Say true or false. 13 State Duplication (Legendre) formula. Find B $\left(\frac{9}{2},\frac{7}{2}\right)$ 14 (a) Solve : 9yy' + 4x = 0Q.2 03

	(b)	Solve: $\frac{dy}{dx} + y \cot x = 2 \cos x$	04
	(c)	Find series solution of $y'' + xy = 0$	07
		OR	
	(c)	Determine the value of (a) $J_{\frac{1}{2}}^{1}(x)$ (b) $J_{\frac{3}{2}}^{3}(x)$	07
Q.3	(a)	Solve $(D^2 + 9)y = 2\sin 3x + \cos 3x$	03
	(b)	Solve $y'' + 4y' = 8x^2$ by the method of undetermined coefficients.	04
	(c)	(i) Solve $x^2p + y^2q = z^2$ (ii) Solve by charpit's method px+qy = pq	07
Q.3	(a)	OR Solve $y'' + 4y' + 4 = 0$, $y(0) = 1$, $y'(0) = 1$	03
	(b)	Find the solution of $y'' + a^2y' = \tan ax$, by the method of variation of parameters.	04
	(c)	Solve the equation $u_x = 2u_t + u$ given $u(x,0) = 4e^{-4x}$ by the method of separation of variable.	07
Q.4	(a)	Find the fourier transform of the function $f(x) = e^{-ax^2}$	03
	(b)	Obtain fourier series to represent $f(x) = x^2$ in the interval $-\pi < x < \pi$. Deduce that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$	04
	(c)	Find Half-Range cosine series for $F(x) = kx , 0 \le x \le \frac{l}{2}$ $= k(l-x) , \frac{l}{2} \le x \le l$ Also prove that $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$	07
Q.4	(a)	OR Expres the function F(x)=2, $ x < 2$	03
	(b)	= 0, $ x > 2$ as Fourier integral. Find the fourier series expansion of the function $F(x) = -\pi \qquad -\pi < x < 0$ = x $0 < x < \pi$	04
	(c)	Find fourier series to represent the function $F(x) = 2x - x^2$ in $0 < x < 3$	07
Q.5	(a)	Find $L^{-1}\left\{\frac{1}{(s+\sqrt{2})(s-\sqrt{3})}\right\}$	03
	(b)	Find the laplace transform of (i) $\frac{cosat-cosbt}{t}$ (ii) tsinat	04
	(c)	State convolution theorem and use to it evaluate $L^{-1}\left\{\frac{1}{(s^2+a^2)^2}\right\}$	07

OR

Q.5 (a) L { $t^2 \cos h3t$ }

(b) Find
$$L^{-1}\left\{\frac{1}{s^4-81}\right\}$$
 04

(c) Solve the equation $y'' - 3y' + 2y = 4t + e^{3t}$, when 07 y(0)=1, y'(0) = -1

03