GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III(New) EXAMINATION – SUMMER 2016

Subject Code:2130303 Date:27/05/2016 Subject Name:Bioelectric Potential and Measurement Techniques				
Time:10:30 AM to 01:00 PM Total Marks	: 70			
Instructions:				
1. Attempt all questions.				
2. Make suitable assumptions wherever necessary.				
3. Figures to the right indicate full marks.				
Ν	IARKS			
Q.1 Select the correct answer from multiple choice questions.	14			
1 The bundle of muscle fibers in a muscle supplied by a single motor nerve fiber is				
called a				
A Motor unit B Purkinje fiber system				
C Bundle of His D Muscle spindle				
 2 How is arterial blood pressure expressed? A 120/80 mmHg B 11/16 KPa 				
A 120/80 mmHg B 11/16 KPa C 80/120 mmHg D None of the above				
3 What are chemoreceptors?				
A Nerve endings sensitive to pressure B Hormones increasing heart rate				
changes				
C Hormones causing sodium and water D Nerve endings involved in				
loss from the kidney control of respiration				
4 Average body temperature is				
$\mathbf{A} 98^{\circ}\mathrm{C} \qquad \qquad \mathbf{B} 68^{\circ}\mathrm{C}$				
\mathbf{C} 47°C \mathbf{D} 37°C				
5 Arrhythmia can be diagnosed by				
A EEG B Phono cardiography				
C Vector cardiogram D ECG				
6 Stokes attacks can be successfully treated with a				
ADefibrillatorBNerve stimulatorCPacemakerDArtificial heart valve				
 C Pacemaker 7 In ECG, the calibration signal amplitude is D Artificial heart valve 				
$\mathbf{A} = 1 \text{ mV}$ $\mathbf{B} = 1 \text{ V}$				
$\mathbf{C} = 1 \mu \mathbf{V}$ $\mathbf{D} = 0.5 \mathrm{mV}$				
8 EEG waves include frequency content ranging from				
A less than 1 Hz to 50 Hz \mathbf{B} dc to 2000 Hz				
C 10 Hz to 1000 Hz D 0.05Hz to 2 kHz				
9 The resting potential of the inside of the neuron is about				
$\mathbf{A} 100 \ \mu \mathbf{V} \qquad \qquad \mathbf{B} 1 \ \mathbf{mV}$				
\mathbf{C} -70 mV \mathbf{D} few mV				
10 The frequency of the action potential in the relaxed muscle is				
A 20-5000 Hz B 60 Hz				
C 0 Hz D 50 Hz				
11During Myocardial Infarction, one can useAPacemakerBHeart lung machine				
APacentakerBHeart ung machineCNerve stimulatorDKidney Machine				
12 To produce ventricular contraction with an electric pulse, the minimum energy				
required is				
$\mathbf{A} = 10 \text{ mW}$ $\mathbf{B} = 10 \mu \text{J}$				
$\mathbf{C} = 1\mathbf{W}$ $\mathbf{D} = 1\mathbf{J}$				
13 To avoid electrode polarisation and bio-potential artifacts, electromagnetic blood				
flow meters are using				
A AC magnetic fields B DC magnetic fields				
C d.c. current D circular magnets				

	14	The duration of R wave in normal sinus rhythm isA45 msB57 msC112 msD71 ms	
Q.2	(a) (b)	Classify various transducers by their applications. List and define various types of bioelectrical potentials generated from human body.	03 04
	(c)	Illustrate the mechanism of electrical discharge from heart with necessary diagrams.	07
	(c)	Illustrate the propagation of action potential in nerve fiber with necessary diagrams.	07
Q.3	(a) (b) (c)	Classify various electrodes by their applications. Write a short note on applications of defibrillators. Design and explain a block diagram of EEG measurement device.	03 04 07
Q.3	(a) (b) (c)	OR Discuss basic transduction principal. Write a short note on applications of cardiac pacemaker. Illustrate and explain the 10-20 lead system for EEG measurement.	03 04 07
Q.4	(a) (b) (c)	1	03 04 07
Q.4	(a) (b) (c)	Discuss the difference between heart rate and pulse rate. Discuss the force balance equation with necessary examples. Can direct measurement of cardiac output be possible? Justify your answer and suggest a measurement technique with appropriate block diagram.	03 04 07
Q.5	(a) (b) (c)	List the elements of intensive care monitoring. Discuss the measurement techniques of half-cell potential. Describe the design and applications of functional electrical stimulator. OR	03 04 07
Q.5	(a)	Discuss the pros and cons of continuous monitoring of bioelectrical potentials.	03
	(b) (c)	Draw the equivalent circuit diagram for skin-electrode interface. Describe the design and applications of myoelectric arm.	04 07
