GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III(New) EXAMINATION – SUMMER 2016

Subject Code:2130502 Subject Name:Fluid Flow Operation Time:10:30 AM to 01:00 PM Instructions:

Date:04/06/2016

Total Marks: 70

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

MARKS

03

04

14

Q.1 Short Questions

- **1** What is Newton's law of viscosity?
- **2** Differentiate between Compressible and incompressible fluid.
- **3** How absolute viscosity and kinematic viscosity are related? What are their units in practice?
- 4 Write equation of hydrostatic equilibrium showing each term in figure and explaining it.
- 5 Write equation for measuring pressure drop by simple Manometer.
- **6** When gravity Decanter is used?
- 7 What is fully developed flow.
- 8 What is Reynold's No.? How it classifies the flow of fluid?
- **9** How maximum velocity is related to average velocity when there is Newtonian fluid moving in a straight circular pipe?
- **10** Write Bernoulli equation without friction.
- **11** Give equation for angular momentum.
- **12** What is relation between friction factor and Reynold's No. for Laminar flow?
- 13 What is Mach No.?
- 14 Write formula for the NPSH.

Q.2 (a) .Discuss operating principle of Centrifugal Decanter

- (b) Water flowing at 1500 cm³/sec in a 50 mm diameter pipe is metered by means of a simple orifice meter of Dia. 25mm. If the coefficient of discharge is 0.62, what will be the reading in a - mercury under water - manometer connected to the to the meter? μ of Water = 0.8 CP, ρ_{Hg} =13.6
 - (c) Derive equation for Gravity Decanter relating Total07 depth, depth of each fluid and densities of fluid

OR

(c) Air at 20°C and 2 atm absolute pressure enters a heater through a 50 mm tube at an average velocity of 15 m/s. It leaves the heater through a 65 mm tube at 90° C and 1.6 atm absolute pressure. What is average air velocity at the outlet?

~ ~			
Q.3	(a)		03
	(b)	co-efficient and Reynold's No.	04
	(b)	Discuss velocity Distribution for laminar flow of Newtonian fluids in a circular channel.	04
	(c)	Sulfuric acid is pumped at 30 kg/min through a 60 m	07
	(C)	length of smooth 25 mm pipe. Calculate the drop in	07
		pressure. Density = 1840 kg/M^3 , Viscosity=25 cp	
		OR	
Q.3	(a)	Discuss different types of weir and flow through them.	03
L	(b)	•••	04
	(c)	Derive Bernoulli equation stating all assumptions.	07
Q.4	(a)	List various types of pumps and their specific application.	03
C	(b)	List various types of Valves and their specific	04
		application.	
	(c)	Discuss construction and working of Centrifugal pump.	07
		OR	
Q.4	(a)	What are the forces acting on a body falling freely in a	03
		fluidExplain what is terminal velocity.	
	(b)		04
	(c)	Estimate the terminal velocity for 80- to 100-mesh	07
		particles of lime stone ($\rho_p = 2800 \text{ Kg/M}^3$.)falling in water	
		at $30m^{\circ}C.D_{P}$ for 100 mesh =0.147 mm and D_{P} for 80	
		mesh =0.175 mm, μ of Water = 0.8 CP and ρ_{water} =	
		1000 kg/M^3 .	
Q.5	(a)	0	03
Z.e	(4)	Divergent nozzle.	00
	(b)	.Explain difference between fans, Blowers and	04
		compressor.	
	(c)	Explain any device to create vacuum.	07
		OR	
Q.5	(a)	Explain Cavitations in pump and Priming.	03
	(b)	Discuss construction and working of reciprocating	04
		compressor	
	(c)	Air at 1.7 atm gauge and 15 C enters a horizontal 75 mm	07
		steel pipe that is 70 meter long. The flow rate of entering	
		Air is 0.265M3/s. Assuming isothermal flow, what is the	
		pressure at discharge end of pipe? μ of AIr = 00174	
		CP,Take $f = .0044$	
