Date:09/06/2016

Total Marks: 70

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III(New) EXAMINATION - SUMMER 2016

Subject Code:2130901

Subject Name: Circuits and Networks

Time:10:30 AM to 01:00 PM

Instructions:

- 1. Attempt all questions.
- Make suitable assumptions wherever necessary. 2.
- 3. Figures to the right indicate full marks.

Q.1 Do as directed:

- What is potential difference? 1
- 2 Draw the V-I characteristic for Ideal Voltage source.
- 3 Super position theorem is applicable to network.
 - (A) Linear (B) Bilateral (C) Linear and Bilateral (D) None of these Justify: The inductors act as an open circuit at time $t = 0_+$.
- 4 5 State and explain: Principle of conservation of charge.
- 6 What is transfer function?
- 7 Define: Poles and Zeros of network transfer function.
- 8 Define: Driving point impedance.
- 9 What is the condition for symmetrical network for z-parameters?
- 10 What is the condition for reciprocal network for h-parameters?
- Define: Oriented Graph. 11
- What is Tree and Co-tree? 12
- 13 Define: Tie-set.
- 14 Define: Incidence matrix.
- State and explain principle of Duality. Q.2 (a) Describe the power and energy relations for two-terminal elements (i.e. **(b)**
 - 04 Resistor, Inductor and Capacitor). (c) For the circuit of figure – 1, suppose $V_{in} = 1 V$. Find R so that $V_{out}/V_{in} = 150$. 07

OR

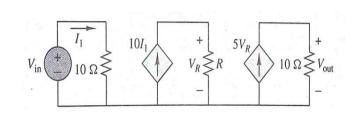
- (c) For the circuit of figure 2, using mesh analysis find the mesh currents I_1, I_2 07 and I_3 . Also find voltage v across a dependent source.
- What is an impulse function? Find the impulse response h(t) for the network **Q.3** 03 (a) function $H(s) = 1/s^2 + 4s + 4$. 04
 - Explain significance of poles and zeros in network functions. **(b)**
 - For the network of the figure -3, show that the equivalent Thevenin network is 07 (c) represented by

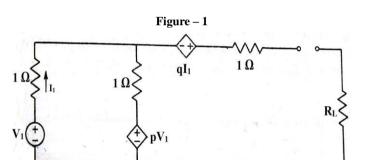
$$V_T = \frac{V_1}{2}(1 + p + q - pq)$$
 and $R_T = \frac{3 - q}{2}$
OR

- Determine the Laplace transform of $f(t) = e^{-at} \cos \omega t$. Q.3 **(a)**
 - (b) Obtain the pole-zero plot of the transform impedance of the network shown in 04 the figure -4.
 - For the network of the figure -5, determine the Thevenin equivalent network 07 (c) for the load R_L .
- **Q.4 (a)** State and explain initial value theorem.
 - **(b)** Briefly describe the network synthesis and its application.
 - The network shown in the figure -6 is in the steady state with the switch K 07 (c) closed. At t = 0, the switch is opened. Determine the voltage across the switch, v_k and dv_k/dt at $t = 0_+$.

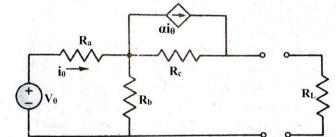
03

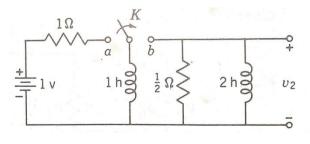
03

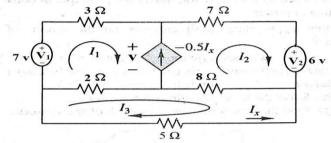

03

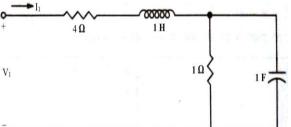

04

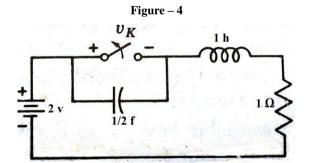
OR


Q.4	(a)	Write the initial conditions for the inductor and capacitor at $t = 0_+$ and $t = \infty$.	03
	(b)	Briefly explain Positive Real Function.	04
	(c)	In the network of the figure -7 , the switch K is in position a for a long time. At	07
		$t = 0$, the switch is moved from a to b. Find $v_2(t)$ with assumption that the	
		initial current in the 2 h inductor is zero.	
Q.5	(a)	Determine y-parameters in terms of z-parameters.	03
	(b)	For the resistive network shown in the figure -8 , draw the oriented graph and	04
		tree. Also develop the fundamental tie-set matrix (B_f) .	
	(c)	For the network shown in the figure -9 , determine the y-parameters.	07
OR			
Q.5	(a)	Derive the condition for the network to be reciprocal for ABCD-parameters.	03
	(b)	For the resistive network shown in the figure -8 , Develop the incidence matrix	04
		А.	
	(c)	For the network shown in the figure -9 , determine the z-parameters.	07









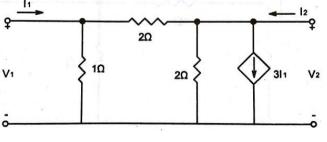
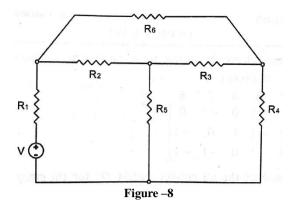



Figure – 9

2

