GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III(New) EXAMINATION – SUMMER 2016

Subject Code:2132003Date:27/Subject Name:Design Concepts in Basic ElectronicsTotal NTime:10:30 AM to 01:00 PMTotal NInstructions:Total N			
			MARKS
Q.1	1	Short QuestionsWhich of the following gates are added to the inputs of the OR gate to convert it to the NAND gate?A) NOT, B) AND, C) OR, D) XOR	14
	2	The Exclusive NOR gate is equivalent to which gate following by an inverter? A) OR, B) AND C) NAND, D) XOR	
	3	BCD isA) Binary Coded Decimal, B) Bit Coded Decimal,C) Binary Coded Digit, D) Bit Coded Digit	
	4	Convert Decimal (21) ₁₀ to Binary	
	5	A) (10111) ₂ , B) (11001) ₂ , C) (11000) ₂ , D) (10101) ₂ Convert Binary (11101) ₂ to decimal	
		A) $(26)_{10}$, B) $(27)_{10}$, C) $(28)_{10}$, D) $(29)_{10}$	
	6	 A set of flip flop integrated together is called A) Counter, B) Adder, C) Register, D) None of the above 	
	7	A register organized to allow to move left or right operations is called a	
		A) Counter, B) Coder, C) Adder, D) Shift register	
	8 9 10 11 12 13	 State the truth table of T-flip flop. Convert (10101)₂ into equivalent hexadecimal. Convert (25)₈ into equivalent decimal. Define term "Register". 	
0.2	14	What is p-n-p transistor?	07
Q.2	(a)		U/
		(1) $\overline{A} + \overline{B} + \overline{C} = \overline{(A \cdot B \cdot C)}$ (2) $XY + \overline{XZ} + YZ = XY + \overline{XZ}$	

(b) Show that NAND and NOR are universal gate.

1

07

OR

		ON	
	(b)	Explain Digital logic gates with symbol, algebraic function and truth table.	07
Q.3	(a)	Comparison between 1's and 2's compliments.	03
Q	(b)	•	03
	(c)	Design 3bit up-down synchronous counters with help of T-flip flop.	07
	(C)	OR	07
Q.3	(a)	List out digital logic families.	03
Q.3	(a) (b)	Draw logic diagram and state the truth table of J-K flip-flop.	03
		Explain in detail different types of break down in diode.	04
04	(\mathbf{c})	1 01	07
Q.4	(a) (b)	Explain forward bias circuit.	03
	(b)		04
	(c)	Give the points of difference between half wave, full wave and	07
		bridge rectifier.	
0.4	(\cdot)	OR	03
Q.4	(a)	Explain reverse bias circuit.	03
	(b)	Explain with neat diagram 3 to 8 decoder.	04
	(c)	Explain with neat diagram working of 4-bit bidirectional shift	07
~ -		register with parallel load.	
Q.5	(a)		03
	(b)	State the truth table of full adder and half adder.	04
	(c)	Explain the input output characteristics of n-p-n transistor in CB	07
		configuration. Also indicate different regions.	
		OR	
Q.5	(a)	What is a clamper explain briefly.	03
	(b)	Draw the logic diagram and state truth table for D-flip flop.	04
	(c)	Explain the input output characteristics of n-p-n transistor in CE configuration. Also indicate different regions.	07
		<i>6 </i>	
