C . XT	T 1
Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III(New) EXAMINATION - SUMMER 2016

Subject Code:2133607 Date:0		2/06/2016	
_		Name:Physical Chemistry	
Time	e:10:	30 AM to 01:00 PM Total Mark	ks: 70
Instru			
	2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	1	Short Questions Reaction rates can change with (a) temperature (b) the addition of a catalyst (c) reactant concentrations (d) all of these	14 1
	2 3	Define the term Molar heat capacities Third law of thermodynamics	1
	4 5	Define the term enzyme catalysis. What do you mean by Activation energy?	1 1
	6	A catalyst can be described as a substance that: (a) undergoes change to accelerate the rate of the reaction (b) increases the kinetic energy of the reactants (c) provides a path of lower activation energy for the reaction (d) lowers the potential energy of the products with respect to the energy of the reactants	1
	7	Define the term order of reaction	1
	8	For second-order reactions the rate constant, <i>k</i> , has the unit(s) (1) lit/mol (2) 1/time (3) time. Mol/lit (4) none of these	1
	9	A reaction in which all reactants are in the same phase is called (a) elementary (b) bimolecular (c) homogeneous (d) heterogeneous	1
	10	Define the term extensive and intensive properties.	1
	11	Define the term EMF	1
	12	Define the term critical point	1
	13	Define the term degree of freedom.	1
Q.2	14 (a)	Define the term surfactant. Derive Nernst equation showing effect of electrolyte concentration on the potential of an oxidation-reduction electrode.	1 03
	(b)	The critical temperature of hydrogen gas is 33.2°C and its critical pressure is 12.4 atm. Find out the values of 'a' and 'b' for the gas	04
	(c)	Write a note on acid base catalysis. OR	07
	(c)	State and explain the phase rule. Explain various terms involved.	07
Q.3	(a)	Define the term electrochemistry. Explain reversible cell in detail.	03
	(b) (c)	Derive relation between free energy and EMF. Write a note on van der Waals' Equation and Critical Constants	04 07
0.2	(2)	OR Write a note on super critical fluid	Ω2
Q.3	(a)	Write a note on super critical fluid.	03

	(b)	Explain adsorption theory of catalysis with examples.	04
	(c)	Explain first law of thermodynamics in details.	07
Q.4	(a)	Define the term positive catalysis and catalytic poison with examples.	03
	(b)	Explain 2 nd order reaction with examples.	04
	(c)	Derive the relation $Cp - Cv = R$	07
		OR	
Q.4	(a)	One mole of an ideal gas at 25°C is allowed to expand reversibly at constant temperature from a volume of 10 litres to 20 litres. Calculate the work done by the gas in joules and calories.	03
	(b)	What do you mean by simultaneous reaction? Give examples of it and derive an equation for it.	04
	(c)	Explain phase rule for condensed system.	07
Q.5 (a)	(a)	Calculate the amount of heat necessary to raise 213.5 g of water from 25° to 100°C. Molar heat capacity of water is 18 cal mol ⁻¹ K ⁻¹ .	03
	(b)	Explain half-cell reaction in details.	04
	(c)	Derive mathematical expression for the rate constant of a reaction $(A \rightarrow Products)$	07
		OR	
Q.5 (a)		Four moles of an ideal gas expand isothermally from 1 litre to 10 litres at 300 K. Calculate the change in free energy of the gas. $(R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1})$	03
	(b)	Write a note on surface active agents.	04
	(c)	Explain phase rule for Sulphur system.	07
