GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV(New) EXAMINATION - SUMMER 2016

Subject Code:2140105 **Subject Name:Numerical Methods** Time:10:30 AM to 01:00 PM **Instructions:**

Total Marks: 70

Date:26/05/2016

1. Attempt all questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

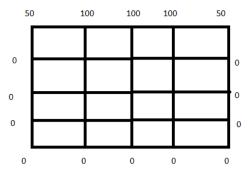
MARKS

14

0.1 **Short Questions**

- State the normalized equations for the least square method 1 $y=a+bx+cx^2$.
- State Gauss forward interpolation formula. 2
- 3 Name the unequal interpolation methods.
- State the difference between Runge Kutta 2nd order and 4th 4 order method.
- State the types of partial differential equations. 5
- Give example of an initial valued problem. 6
- 7 State methods for solving boundary valued problem.
- Prove that $\nabla = 1 E^{-1}$ 8
- Discuss the difference between finite element method and 9 finite difference method.
- Prove that $E\nabla = \nabla E$. 10
- State the formula of Weddles rule. 11
- 12 State the value of p in Newton backward interpolation
- Give discretized form of parabolic equation. 13
- Discuss the cubic spline approach. 14

(a) State the normalized formula for fitting the curve $y=e^{bx}$ Q.2 03


x		0	1		2	
у		1	6		17	
Given						
x	10	20	30	40	50	
	600	512	439	346	243	

and (c) State implement Newtons divided difference 07 interpolation find the polynomial satisfying the data -1 3 0 1 х

2 0 1 -1 v (a) Find a real root of the equation $x^3-2x-5=0$ using bisection 03 0.3 method correct upto three decimal places.

Solve the system using Gauss elimination method **(b)** 04 2x-y+3z=8, -x+2y+z=4, 3x+y-4z=0.

	(c)	Evaluate integral using Simpson 3/8 rule						
		$\int_{0}^{\frac{\pi}{2}} \sin x dx$ with 10 equal parts. State the formula of Simpson 1/3 rd rule.						
		OR						
Q.3	(a) (b)							
		Solve using trapezoidal rule, $\int_{1}^{5} \log_{10} x dx$.	04					
	(c)	Solve using Gauss Jacobi method	07					
0.4	(\mathbf{a})	27x+6y-z=85, 6x+5y+2z=72, x+y+54z=110.	02					
Q.4	(a)	Given $\frac{dy}{dx} = x + y^2$, $y(0)=1$. Use Runge Kutta	03					
		method for evaluating $y(0.2)$.						
	(b)	Obtain Picard's second approximation solution of the initial	04					
		valued problem for, $\frac{dy}{dx} = x^2 + y^2$ for x=0.4						
		correct to three decimal places with $y(0)=0$.	07					
	(c) Solve $\frac{dy}{dx} = x + y$ with $y(0)=1$ by Euler's modified							
		method for $x=0.1$. with $h=0.05$.						
Q.4	(a)	OR State Eulers formula for IVP and solve	03					
Y . -	(a)	-	05					
		$\frac{dy}{dx} = x - y^2 \text{ with y(0)=1.}$						
	(b)		04					
		Using Taylors series solve $\frac{dy}{dx} = xy^{\frac{1}{3}}$, $y(1)=1$. Find	•••					
		<i>y</i> (1.1).						
	(c)	Compute y for x=0.2 and x=0.4 for $\frac{dy}{dx} = y - \frac{2x}{y}$	07					
		Compute y for x=0.2 and x=0.4 for $\frac{y}{dx} = y - \frac{y}{y}$						
		, $y(0)=1$. Using Rung Kutta 4 th order method.						
Q.5	(a)	State the finite difference formula for forward, backward	03					
		and central formula for $\frac{dy}{dx}$						
		and central formula for $\frac{1}{dx}$						
	(b)	Solve the laplace equation with boundary	04					

(c) Implement Rayleigh Ritz method to solve y''+x=0.0 < x < 1. 07 y(0)=y(1)=0.

OR

Q.5 (a) State the Successive over relaxation method. 03

- (b) Solve the boundary valued problem using shooting method y''=y with y(0)=0, y(1)=1.1752. 04
- (c) Solve using Galerikin approach y''+y=-x, 0 < x < 1 07 y(0)=y(1)=0.
