Seat No.:	Enrolment No
-----------	--------------

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV(New) EXAMINATION - SUMMER 2016

Su	ıbje	ect Code:2140406 Date:	01/06/2016
Su	ıbje	ect Name:Stoichiometry	
	Fime: 10:30 AM to 01:00 PM Total Marks		Marks: 70
		tions:	11202 220 1 0
		Attempt all questions.	
		Make suitable assumptions wherever necessary.	
		Figures to the right indicate full marks.	
		Mol. Wt: Na = 23, K=39, O= 16, H=1, N=14, C=12, Mg=24, Ca	a=40, S=32,
		Cl=35.5	, ,
0.4			
Q.1	4	Short Questions	14
	1	Define Percentage Conversion	01
3 Give value of universal gas		Explain the terms Limiting component and Excess component.	01
		Give value of universal gas constant in atm.lit/mol.K and kPa.m ³ /k	
	4	Define: Standard Heat of reaction	01
5 Differentiate between: Sensible heat and latent h			01
	6	Define: Yield	01
	7	Define: Dry-bulb temperature	01
	8	Define : Absolute humidity	01
	9	How many grams of NH ₄ Cl are there in 5 moles?	01
	10	·	01
	11	· ·	01 01
	12 13		01
	14		01
	17	Define .Dew point	VI
Q.2	(a)		lensity 03
	(1.)	in kg/m ³ .	0.4
	(b)	· · · · · · · · · · · · · · · · · · ·	
		333 K. The density of the solution is 1.127 kg/L. Find the molarity normality and molality of the solution.	,
	(c)		e rate of 07
	(0)	1000 kg/h to a continuous distillation column. The product (distill	
		solution containing 95.5% alcohol. The waste solution from the	
		carries 0.1% of alcohol. All percentages are by mass. Calculate	
		mass flow rates of top and bottom products in kg/h and (b) the per	
		loss of alcohol.	
		OR	
	(c)	A spent lye sample contains 96% glycerol and 10.3% NaCl s.	alt It is 07
		concentrated at the rate of 5000 kg/h in a double effect evaporator	until the
		final solution contains 80% glycerol and 6% salt 45% glycerol is	lost by
		entrainment All the percentage are by mass Determine: (i) the evap	•
		taken place in the system (ii) the amount of salt crystallized out f	rom the
		evaporator.	
Q.3	(a)	Write short note on recycling operation.	03
Z.5	(a)	The short note on recjoing operation.	05

Benzene: 24%, Oxygen: 1%, Methane: 15%, Ethane: 25%, Nitrogen: Find the average molecular mass of the gas mixture. It is required to make 1000 kg mixed acid containing 60% H₂SO₄, 32% 07 HNO₃ and 8% water by blending (i) spent acid containing 11.3% HNO₃, 44.4% H₂SO₂ and 44.3% H₂O₃ (ii) aqueous 90% HNO₃ and (iii) aqueous 98% H₂SO₄. All percentage are by weight. Calculate the quantities of each of the three acids required for blending. OR 0.3 The available nitrogen in a urea sample is found to be 45%. Find the 03 (a) actual urea (NH₂-CO-NH₂) content in the sample. (b) Single effect evaporator concentrating weak liquor containing 4% solids to 04 55% solids (by weight) is fed with 5000 kg/h of weak liquor. Calculate: a) water evaporated per hour, and b) flow rate of thick liquor. Pure methane is heated from 303K to 523K at atmospheric pressure. **07** Calculate the heat added per kmole methane using Cp data: $Cp = a + bT + cT^2 + dT^3$. Data for methane: a = 19.2494, $b = 52.1135 \times 10^{-3}$, $c = 11.973 \times 10^{-6}$, $d = -11.3173 \times 10^{-9}$. **Q.4** (a) Write short note on bypass operation 03 Sodium chloride weighing 600 kg is mixed with 200 kg of Potassium 04 chloride. Find the composition of mixture in mass percentage. The conductance of a fluid-flow system is defined as the volumetric flow 07 (c) rate, referred to a pressure of one torr (133.322 Pa). For an orifice, the conductance C can be computed from $C = 89.2A \sqrt{\frac{T}{M}} ft^3 / s$ Where A = area of opening.ft² T = Temperature, ${}^{0}R$ M = Molecular Weight Convert the empirical equation into SI units. 0.4 Define: Distillation, Evaporation and crystallization. 03 In the Deacon process for manufacture of Chlorine, hydrochloric gas is 04 oxidized with air. The reaction taking place is: 4 HCl + $O_2 \rightarrow 2$ Cl₂ + 2 H₂O. The air used is in excess of 30% of that theoretically required and the oxidation is 80% complete. Calculate the composition by volume of dry gases leaving the reaction chamber. **07** The gaseous reaction $A \rightarrow 2B + C$ takes place isothermally in a constant pressure reactor. Starting with a mixture of 75% A and 25% inert (by volume), in a specified time the volume doubles. Calculate the conversion achieved. **Q.5** Using Antoine equation calculate the vapour pressure of acetic acid at 316 03 K. Data: A=6.5127 B= 1533.30 C= -50.8500 The diameter and height of a vertical cylindrical tank are 5 ft and 6 ft 6 in 04 **(b)** respectively. It is full up to 75% height with carbon tetrachloride, the density of which is 1.6 kg/L. Find the mass in kilograms and pounds Formaldehyde is produced from methanol catalytic reactor. 07 production rate of formaldehyde is 1000 kg/h. If conversion of methanol is 65%, calculate the required feed rate of methanol. A sample of aqueous triethanolamine (TEA) solution contains 47% TEA **03** Q.5

(b) A gas mixture has the following composition by volume: Ethylene: 31%,

04

- (on volume basis). If density of pure TEA is 1125 kg/m^3 , find the weight % of TEA in the solution.
- **(b)** Discuss methods of solving material balance problems without chemical reaction.
- (c) A heat exchanger for cooling a hot hydrocarbon liquid uses 10000 kg/hr of cooling water, which enters the exchanger at 294 K. The hot oil at the rate of 5000 kg/hr enters at 423 K and leaves at 338 K and has an average heat capacity of 2.51 KJ/(kg.K). Calculate the outlet temperature of water.

04