GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER–IV(New) EXAMINATION – SUMMER 2016 Subject Code:2140706 Date:01/06/2016

Subject Name:Numerical and Statistical Methods for Computer EngineeringTime:10:30 AM to 01:00 PMTotal Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1 Short Questions

- **1** Define: Accuracy and Precision
- 2 If a=0.8461538461 is approximated by 0.84615 then find percentage relative error.
- **3** What is convergence rate of Bisection method and Newton Raphsonmethod.
- 4 Write any two pitfalls of Newton Raphson method.
- 5 The error caused by truncating an infinite series to a finite number of terms is called ______ and the error associated with chopping and rounding is called ______.
- 6 Check the following system is diagonally dominant or not. Justify your answer.

10x - 4y + z = 7; x + 5y - 2z = 5; 8x - 4y - 3z = 6

- 7 Employ partial pivoting to the following system of equations: 4x+2y-z = -2; 5x+y+2z = 4; 6x+y+z = 6
- 8 Write appropriate Simpson's integration formula to solve the integration 1.8 $\int f(x) dx$, dividing the interval into 9 equal parts.
- **9** Define ill-conditioned system.
- 10 Can you apply False position method to obtain a root of the equation $f(x) = xe^{x} 2 = 0$ in the interval (0,0.5)? Justify your answer.
- 11 Find the arithmetic mean of the following frequency distribution.

X:	1	2	3	4
f:	4	5	2	1

12 What is mode of the following frequency distribution?

Data values x:	1	2	3	4
frequency f:	4	7	10	8
			2	

- 13 What is the approximate value of the $\int_{1}^{1} f(x) dx$, using trapezoidal rule with h=1, where f (1) = 2, f (2) = 4.
- 14 Find the approximate root of the equation $f(x) = x^3 + x = 0$ after the first iteration of Newton Raphson method with initial guess $x_0 = 1$.
- **Q.2** (a) Discuss the steps of an engineering problem solving.
 - (b) Perform three iterations of Bisection method to obtain a root of the equation $f(x) = \cos(x) xe^x = 0$ in the interval (0.5,1).

14

MARKS

03

(c) 1) Test the convergence condition for the equation $x = \frac{1}{3}(\cos(x)+1)$ in

the interval $(0, \frac{\pi}{2})$ and then solve the equation using successive approximation method correct up to three places of decimals taking initial guess as $x_0 = 0.5$.

2)Apply Budan's theorem to the equation $x^4 - 7x^2 + 6x - 1 = 0$ to draw the inference about the roots in the interval (-2, -1).

OR

- (c) Perform one iteration of the Bairstow method to extract a quadratic factor $x^2 + px + q$ from the polynomial $x^4 + x^3 + 2x^2 + x + 1 = 0$. Use the initial approximation r = 0.5, s = 0.5. Also, calculate the relative approximate error in r and s after first iteration.
- Q.3 (a) Write an algorithm to fit a straight line using least square method.
 - (b) The following system of equations was generated by applying mess 04 current law to the circuit. Use Gauss Elimination method to find the current in the circuit.

 $2I_1 - I_2 + 3I_3 = 8$ - I_1 + 2I_2 + I_3 = 4 $3I_1 + I_2 - 4I_3 = 0$

(c) State the Direct & iterative method to solve system of linear equations.
O7 Arrange following system of equations into diagonally dominant form and solve it using Gauss Seidel method.

 $10x_1 + x_2 + x_3 = 12$ $2x_1 + 2x_2 + 10x_3 = 14$ $2x_1 + 10x_2 + x_3 = 13$

OR

- Q.3 (a) Write an algorithm for Simpson's $1/3^{rd}$ rule to integrate the tabulated 03 function.
 - (b) A train is moving at the speed of 30m/sec. Suddenly brakes are applied. 04 The speed of the train per second after t seconds is given by the following table.

Time(t)	0	5	10	15	20	25	30
Speed(v)	30	24	19	16	13	11	10

Apply Simpson's three-eight rule to determine the distance moved by the train in 30 seconds.

(c) Obtain cubic Splines approximation for the following data and hence 07 compute f (1.5).

Х	1	2	3	
f(x)	-8	-1	18	

Q.4 (a) Use following data to evaluate f(2.5).

x:	0	1	2	3
f(x):	1	2	1	10

(b) Use following data to construct a Lagrange's polynomial of degree two. 04

x:	0.0	0.6	1.2
f(x):	1	0.825336	0.362358
English the f	- 11 1	- 4 1 - 4 - 1 -	

⁽c) From the following data obtain the two regression lines and the 07 correlation coefficients.

x:	100	98	78	85	110	93	80		
y:	85	90	70	72	95	81	74		
OP									

03

07

03

- Q.4 (a) Using Euler's method compute y (0.3) for the initial value problem 03 $y' = y^2 x^2$, y(0) = 1 taking the step size h=0.1.
 - (b) Use the Runge-Kutta 4th order method with h=0.1 to find the approximate solution for y(1.1) for the initial value problem $\frac{dy}{dx} = 2xy, y(1) = 1$
 - (c) Fit a polynomial of degree two using least square method for the 07 following experimental data. Also estimate y(2.4)

	x:	1	2	3		4	4	5	
	y:	5	12	20	6	60	9	97	
(a)	Find star	dard de	viation	from the	e folle	owing da	ata.		
	Class		9-11	12-	14	15-1	7	18	-20
	Frequer	ncy	2	3		4			1
(b)	Find cor	relation	coeffici	ent for t	he da	ıta given	belo	OW.	
	x:	4	5	9	14	4 18	3	22	24
	y:	16	22	11	16	5 7		3	17

Q.5

04

03

(c) Use the finite difference approach with h=0.25 to solve the boundary value problem y'' = x + y, y(0) = 1, y(1) = 1.

OR

Q.5 (a) In a college, IT department has arranged one competition for IT students to develop an efficient program to solve a problem. Ten students took part in the competition and ranked by two judges given in the following table. Find the degree of agreement between the two judges using Rank correlation coefficient.

I st Judge	3	5	8	4	7	10	2	1	6	9
II nd Judge	6	4	9	8	1	2	3	10	5	7

(b) The following data represents the number of foreign visitors in a multinational company in every 10 days during last 2 months. Use the data to find median.

x:	0-10	10-20	20-30	30-40	40-50	50-60
No. of visitors f:	12	18	27	20	17	06

(c) The table below shows the demand for a new hard disk for each of the 07 last 7 months.

Month	1	2	3	4	5	6	7
Demand	23	29	33	40	41	43	49

1) Calculate a two month moving average for months two to seven.

2) What would be your forecast for the demand in month eight?

3)Calculate Mean Square Error(MSE).