GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV(New) EXAMINATION – SUMMER 2016

Subject Code:2140707 Date:03/06 Subject Name:Computer Organization			6
Time:10:30 AM to 01:00 PM Total Mark			
Inst			
1 2 3	•	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1		Short Questions	14
•	1	Represent the following conditional control statement(s) by two register transfer statements with control function. If $(P = 1)$ then $(R1 \leftarrow R2)$ else if $(Q=1)$ then $(R1 \leftarrow R3)$	
	2	Which information is stored by Program Counter (PC)?	
	3	Define pseudo-instruction.	
	4	Give full form of CAR.	
	5	Enlist major components of CPU.	
	6	State any two solutions for handling branch difficulties.	
	7	State true or false:	
	0	With floating point numbers, the divide overflow imposes no problem(s).	
	8	Enlist possible modes of data transfer to and from peripherals. Define hit ratio.	
	9 10	What is critical section?	
	11	Enlist any two examples of external interrupt.	
	12	What do you mean by speed-up in context of pipelining?	
	12	State true or false:	
	10	In binary number system, $B - A$ is equivalent to $B + \overline{A} + 1$.	
	14	What is page fault?	
Q.2	(a)	Design a digital circuit for 4-bit binary adder.	03
	(b)	Write a sequence of microoperation(s) for the following memory reference instructions. 1) ADD 2) BUN	04
	(c)	Write a program to evaluate the following arithmetic statement X = [A * (B + C) - D] / (E + F - G)	07
		 (i) using a general register computer with three-address instructions, (ii) using an accumulator type computer with one-address instructions, 	
		(iii) using a stack organized computer with zero-address operation instructions.	
		OR	
	(c)		07
Q.3	(a)	For the following C language code, write assembly language program: int a, b, c;	03

- int a, b, c; a = 83; // plus 83 b = -23; //minus 23 c=a + b;
- (b) Explain hardware implementation of common bus system using three- 04

		state buffers. Mention assumptions if required.	
	(c)	List various types of addressing modes and explain any five of them.	07
	(-)	OR	
Q.3	(a)	State the differences between hardwired control and microprogrammed control.	03
	(b)	Draw and briefly explain flowchart for first pass of assembler.	04
	(c)	Elaborate 4-segment instruction pipeline with neat sketches.	07
Q.4	(a)	State the major characteristics of RISC processor.	03
	(b)	Write a brief note on microprogrammed control organization.	04
	(c)	Assume $A = (+8)$ and $B = (+5)$. Multiply these two numbers using Booth algorithm. Show the step-by-step multiplication process.	07
		OR	
Q.4	(a)	Draw space-time diagram for 4-segment pipeline with seven tasks.	03
	(b)	State the differences between register stack and memory stack.	04
	(c)	Draw and explain flowchart for addition and subtraction operations with sign-magnitude data.	07
Q.5	(a)	Briefly explain source initiated transfer using handshaking.	03
-	(b)	Write a note on crossbar switch interconnection structure with block diagram.	04
	(c)	Write a short note on associative memory.	07
		OR	
Q.5	(a)	Discuss the differences between tightly-coupled multiprocessor and loosely-coupled multiprocessor.	03
	(b)	Explain daisy chain priority interrupt.	04
	(c)	What is virtual memory? Explain relation between address space and memory space in virtual memory system.	07
