
Enrolment No.\_\_\_\_\_

## **GUJARAT TECHNOLOGICAL UNIVERSITY** BE - SEMESTER- 4 (NEW SYLLABUS) EXAMINATION- SUMMER 2016

| Subject Name: SIGNALS AND SYSTEMS<br>Time: 10:30 AM to 01:00 PM Total Mar<br>Instructions:<br>1. Attempt all questions.<br>2. Make suitable assumptions wherever necessary                                                                                                             | MARKS |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                                                                                                                                                                                                                                                                                        |       |
| <ol> <li>Make suitable assumptions wherever necessary.</li> <li>Figures to the right indicate full marks.</li> </ol>                                                                                                                                                                   |       |
|                                                                                                                                                                                                                                                                                        | 14    |
| Q.1 Short Questions<br>1 Sketch the waveform of the following signal:<br>x(t) = u(t+1) - 2u(t) + u(t-1)                                                                                                                                                                                | 14    |
| 2 If the response of LTI continuous time system to unit step signal is $\frac{1}{2} - \frac{1}{2}e^{-2t}$ , then find the impulse response of the system.                                                                                                                              |       |
| 3 Find inverse Laplace transform of $\frac{1}{s}(1-e^{-2s})$                                                                                                                                                                                                                           |       |
| 4 Fill in the blanks: "An energy signal has average power, whereas a power signal has energy."                                                                                                                                                                                         | L     |
| 5 Find the output of an LTI system with impulse response $h(t) = \delta(t-3)$ for the input $x(t) = \cos 4t + \sin 7t$ .                                                                                                                                                               |       |
| 6 Evaluate the following integrals. (i) $\int_{1}^{2} (3t^{2} + 1)\delta(t)dt$                                                                                                                                                                                                         |       |
| <ul> <li>(ii) ∫<sub>0</sub><sup>∞</sup> t<sup>2</sup>δ(t-6)dt</li> <li>7 Determine whether following signal is periodic or not. If it is periodic, find fundamental period. x[n] = (-1)<sup>n</sup></li> </ul>                                                                         |       |
| 8 Determine z- transform and its ROC of $x[n] = u[n]$                                                                                                                                                                                                                                  |       |
| 9 Write Fourier Transform of $x(t) = \sin(\omega_o t)$                                                                                                                                                                                                                                 |       |
| 10 If convolution is performed between two signals, $x$ and $h$ , with lengths $N_x$ and $N_h$ , then what will be the length $N$ of resulting signal?                                                                                                                                 |       |
| 11 Define Invertible system.                                                                                                                                                                                                                                                           |       |
| 12 Let $x[n] = \begin{cases} 1, & 0 \le n \le 9 \\ 0, & Otherwise \end{cases}$ and $h[n] = \begin{cases} 1, & 0 \le n \le N \\ 0, & Otherwise \end{cases}$<br>Where N \le 9 is an integer. Determine the value of N, given that $y[n] = x[n] * h[n]$<br>and $y[4] = 5$ , $y[14] = 0$ . |       |
| 13 Integration of unit impulse function over (-∞,∞) yields signal and differentiating a unit ramp function yields signal.                                                                                                                                                              |       |
| 14 Find the even and odd components of following signal:<br>$x(t) = 1 + t + 3t^2 + 5t^3 + 9t^4$                                                                                                                                                                                        |       |
| <ul> <li>Q.2 (a) Categorize the following signals as an energy or power signal and find energy or power of the signal.</li> <li>(i)x(t) = 5 cos(πt) + sin(5πt) ; -∞ &lt; t &lt; ∞</li> <li>(ii)x[n] =</li></ul>                                                                        | 03    |
| <ul> <li>(b) Consider a system S with input x[n] and output y[n] related by y[n] = x[n]{g[n] + g[n - 1]}</li> <li>(i) If g[n] = 1 for all n, show that S is time invariant.</li> <li>(ii) If g[n] = n, show that S is not time invariant.</li> </ul>                                   | 04    |
| <ul> <li>(iii) If g[n] = 1 + (-1)<sup>n</sup>, show that S is time invariant.</li> <li>(c) A continuous time signal x(t) is shown in figure: Sketch and label carefully</li> </ul>                                                                                                     | 07    |

1

each of the following signals.



- (c) Determine whether each of them is (i) memoryless (ii) stable (iii) causal and 07 (iv) linear
  - (1)  $y[n] = 2x[2^n]$

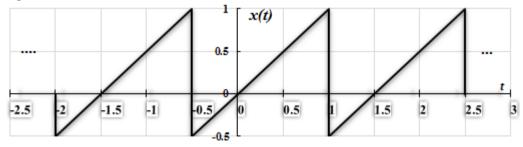
(c)

- (2) y(t) = x(t/2) Justify your answers.
- Q.3 State and prove a condition for a discrete time LTI system to be invertible. 03 **(a)** 
  - The following are the impulse responses of LTI systems. Determine whether **(b)** 04 each system is causal and/or stable. Justify your answers. (i)  $h[n] = (0.8)^n u[n+2]$  (ii)  $h(t) = e^{2t}u(-1-t)$

Find the convolution of two signals 
$$x(t)$$
 and  $y(t)$ 

$$x(t) = \begin{cases} 1, \ |t| \le 1\\ 0, \ Otherwise \end{cases} \qquad y(t) = \begin{cases} 1, \ |t| \le 1\\ \delta(t+2) + \delta(t-2)\\ 0, \ otherwise \end{cases}$$

## OR


State and prove a condition for a discrete time LTI system to be stable. Q.3 (a) 03 Evaluate the step response for the LTI systems represented by the following 04 **(b)** impulse responses:

(i) 
$$h(t) = e^{-|t|}$$
 (ii)  $h[n] = (-1)^n \{u[n+2] - u[n-3]\}$ 

- (c) Evaluate the discrete time convolution sum given below. 07  $y[n] = \beta^n u[n] * u[n-3], |\beta| < 1$
- Determine the output of the system described by the following differential 0.4 **(a)** 03 equation with input and initial condition as specified.

$$\frac{d}{dt}y(t) + 10y(t) = 2x(t), \qquad y(0) = 1, \qquad x(t) = u(t)$$

- (b) Write Differentiation in Time and Differentiation in Frequency property of 04 Fourier Transform. Obtain Fourier Transform of  $\frac{d(e^{-at}u(t))}{d(t-at)}$
- Find the Fourier Series representation for the sawtooth wave depicted in below 07 (c) figure.



OR

- Write modulation property of Fourier Transform. Use frequency differentiation 03 Q.4 (a) property to find the Fourier Transform of  $x(t) = te^{-at}u(t)$ .
  - Determine the Complex Exponential Fourier Series representation for the **(b)** 04 square wave depicted in below figure.

07

$$x(t)$$

$$1$$

$$(c)$$

$$T-T_{S} -T+T_{S} -T_{S} T_{S} T_{S} T_{T}_{S} T_{T}_{T}_{T}_{S}$$

$$(c)$$
Write Duality property of Fourier transform. Given  $e^{-|t|} \stackrel{FT}{\leftrightarrow} \frac{2}{4\pi^{2}f^{2}+1}$ . Find the Fourier transforms of following:  

$$(i) \frac{d}{dt} e^{-|t|} \quad (ii) \frac{1}{2\pi(t^{2}+1)}$$
Q.5 (a) Compute DFT of the following sequence:  $x[n] = \{0,1,2,3\}$ 
(b) Determine z-transform of following sequences.  

$$(i) x[n] = a^{-|n|}, 0 < |a| < 1$$

$$(ii) x[n] = 2^{n}u[n] + 3^{n}u[-n-1].$$
(c) Find the z-transform of the signal  

$$x[n] = \left\{n \left(\frac{-1}{2}\right)^{n}u[n]\right\} * \left\{\left(\frac{1}{4}\right)^{-n}u[-n]\right\}$$
OR  
Q.5 (a) Find the impulse response  $h[n]$  for each of the causal LTI discrete time systems satisfying the following difference equations.  

$$(i) y[n] = x[n] - 2x[n-2] + x[n-3]$$

$$(i) y[n] + 2y[n-1] = x[n] + x[n-1]$$
(b) Write Differentiation in Z-domain property of z- transform. Obtain z-transform of  $x[n] = a^{n} \cos(\Omega_{0}n)u[n]$ , where  $a$  is real and positive.  
(c) Find the inverse z-transform of (20)

$$X(z) = \frac{z^2 - 10z^2 - 4z + 4}{2z^2 - 2z - 4} \text{ with ROC } |z| < 1$$

\*\*\*\*\*