GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV(New) EXAMINATION – SUMMER 2016

Subject Name: Elements of Chemical Engg			Date:26/05/2016	
			Total Mark	ks: 70
	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
				MARKS
Q.1		Short Questions		01
	(1) (2)	Write the unit of rate constant for first order reaction. Write the unit of rate constant for n th order reaction. Write TRUE or FALSE for following		01 01
	(3)	For Elementary reactions, molecularity of reaction is equ of reaction.	al to order	01
	(4)	Parallel and series reactions does not have rate expression	S.	01
	(5)	The higher the value of activation energy, the sensitivity to temperature is higher.	of reaction	01
	(6)	If time (t) is replaced with space time (τ), the bat performance equation will become plug flow reactor p equation.		01
	(7) (8)	The rate of disappearance of product is positive quantity. Higher the rate of reaction at given temperature, reactive required to achieve a specified conversion of reactant will		01 01
	(9)	The real reactor performance, i.e. conversion achieve always in between the CSTR and PFR performance.	d, will be	01
	(10)	For first order liquid phase reaction, CSTR always of conversion than PFR.	fers higher	01
	(11)	Time required in batch reactor for second order reaction higher than time required for first order reaction for conversion.		01
	(12)	Batch reactor performance equation does not have input/o	utput term.	01
	(13)	Exit age do not give any information about expected conreactant for first-order reaction.	nversion of	01
	(14)	Mean residence time is different than space time for idea reactor.	l plug flow	01
Q.2	(a)	Differentiate between elementary and non-elementary read		03
	(b)	Discuss "molecularity of reaction" and "order of reac respect to elementary and non-elementary reaction.		04
	(c)	Define the rate of reaction based on unit volume of fluid reaction based on unit mass of solid, r'_i , rate of reaction		07

unit surface of solid, r''_i , rate of reaction based on unit volume of solid, $r_i^{\prime\prime\prime}$, rate of reaction based on unit volume of reactor, $r_i^{\prime\prime\prime\prime}$. Give the interrelationship of all the above rate definitions.

OR

(c) Consider a municipal water treatment plant for a small community. Waste water, $32000 \text{ m}^3/\text{day}$, flows through the treatment plant with a mean residence time of 8 hr, air is bubbled through the tanks, and microbes in the tank attack and break down the organic material microbes as,

(organic waste) + $O_2 \rightarrow CO_2 + H_2O$

A typical entering feed has a BOD (biological oxygen demand) of 200 mg O₂/liter, while the effluent has a zero BOD. Find the rate of reaction in

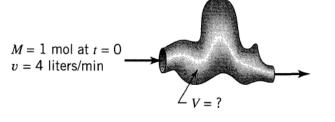
(mole of oxygen required/ m^3 of tank-sec).

Take molecular weight of oxygen 32 gm/mol.

- Write the classification of chemical reactions? Q.3 (a)
 - Differentiate between performance equations for constant volume **(b)** 04 batch reactor and varying volume batch reactor.
 - (c) Milk is pasteurized if it is heated to 63^oC for 30 min, but if it is 07 heated to 74°C it only needs 15 sec for the same result. Find the activation energy of this sterilization process in J/mol.

OR

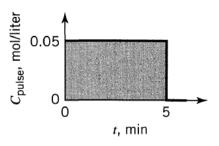
		•	
Q.3	(a)	Enlist the factors affecting the rate of reaction with example.	03
	(b)	A certain reaction has a rate given by,	04
		$-r_{A} = 0.005C_{A}^{2} mol/(cm^{3} - min)$	
		If the concentration is to be expressed in <i>mol/liter</i> and time in	
		hours, what would be the value and units of the rate constant?	
	(c)	Using integral method of analysis of data, derive the following,	07
		$-\ln(1-X_{\star}) = kt$	


 $m(1 - \Lambda_A)$ for irreversible unimolecular-type first-order reactions in batch reactor. Where, X_A is fractional conversion, and k is rate constant, and t is time.

- 0.4 **(a)** Derive the performance equation of ideal batch reactor. 03
 - Describe half-life method for finding the order of reaction. 04 **(b)**
 - After 8 minutes in a batch reactor, reactant ($C_{AO} = 1$ mol/liter) is (c) 07 80% converted; after 18 minutes, conversion is 90%. Find a rate equation to represent this reaction. Determine whether the reaction is zeroth order or first order.

OR

Define Space-Time and Space-Velocity for flow reactors. **Q.4** 03 **(a)** Liquid A decomposes by first-order kinetics, and in a batch reactor 04 **(b)** 50% of A is converted in a 5-minute run. How much longer would it take to reach 75% conversion? Derive the performance equation of ideal plug flow reactor. 07 (c) Write the expression of performance equation when $-r_A = kC_A$ 03


Q.5 A pulse input to a vessel as shown below, **(a)**

07

03

Gives the results as follows,

Check the material balance with the tracer curve to see whether the results are consistent.

- (b) Explain the procedure to convert E curve to F curve obtained from 04 Impulse Input.
- (c) In an isothermal batch reactor with first order reaction 70% of a liquid reactant is converted in 13 min. What space-time and space-velocity are needed to effect this conversion in a plug flow reactor and in a mixed flow reactor?
 - OR
- Q.5 (a) Describe step and impulse input test for determining exit age 03 distribution in non-ideal chemical reactors.
 - (b) Explain the procedure to convert F curve to E curve obtained from 04 Step Input.
 - (c) Liquid A decomposes by first-order kinetics, and in a CSTR, 50% of A is converted with 5-minute space-time. How much space-time would it take to reach 75% conversion?
