GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV(New) EXAMINATION – SUMMER 2016

Su T	ubje ime: struc	ct Code:2141905Date:26/05/2ct Name:Complex Variables and Numerical Methods10:30 AM to 01:30 PMTotal Marktions:1. Attempt all questions.2. Make suitable assumptions wherever necessary.3. Figures to the right indicate full marks.	
Q.1		Short Questions	MARKS
	1	Express $\sqrt{3} - i$ into polar form.	1
	2	Evaluate $\Delta \cos x$.	1
	3	Evaluate $\frac{\lim_{z \to i} \frac{z-i}{z^2+1}}{z + 1}$	1
	4		1
	4	Find the radius of convergence for the series $\sum_{n=1}^{\infty} z^n$	1
	5	Write formula for Simpson's $3/8$ rule.	1
	6	Find the fixed points of $w = \frac{z-1}{z+1}$	1
	7	Give the names of two iterative methods for the solution of system of	1
	8	linear equations. State the theorem, "Cauchy's Integral Formula".	1
	9	Find the pole and its order for $f(z) = \frac{e^z - 1}{z^3}$	1
	10	Find the third divided difference with arguments 2, 4, 9, 10 of the function $f(x) = x^3 - 2x$.	1
	11	Find Res $(f(z),1)$ for $f(z) = \frac{1}{z(z-1)}$	1
	12	Find the interval for $x^3 - x - 11 = 0$ in which the root lies.	1
	13	State DeMoivre's Theorem.	1
	14	Write iterative formula to find $\sqrt{7}$ using Newton-Raphson method.	1
Q.2	(a)	Find all the values of $\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^{\frac{3}{4}}$.	03
	(b)	Show that the function $f(z) = xy + iy$ is continuous everywhere but is	04
		not analytic.	
	(c) (i)	Attempt the following If $u = e^x (x \cos y - y \sin y)$, find the analytic function $f(z)$.	3
	(i) (ii)		4
	()	Find the value of $\int_{0}^{2+i} (\overline{z})^2 dz$, along the real axis from 0 to 2 and then	·
		vertically from 2 to $2 + i$. OR	
	(c)	Attempt the following	
	(i)	If $f(z)$ is a regular function of z, prove that	3

1

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f'(z)|^2.$$
Prove that sink ⁻¹ as lead to $\sqrt{x^2 + 1}$

(ii) Prove that
$$\sinh^{-1} x = \log \left\{ x + \sqrt{x^2 + 1} \right\}$$

Q.3 (a) Evaluate
$$\int_{C} \frac{e^{2z}}{(z+1)^3} dz$$
, where C: $4x^2 + 9y^2 = 16$ using residue theorem. 03

(b) Find the bilinear transformation which transforms z = 2, 1, 0 into w = 1, 04 0, *i*.

(c) Expand
$$\frac{1}{z(z^2 - 3z + 2)}$$
 about $z = 0$, for the regions $(i)0 < |z| < 1$
 $(ii)1 < |z| < 2 \quad (iii)|z| > 2.$ (07)

Q.3 (a) Evaluate
$$\oint_C \frac{z-1}{(z+1)^2(z-2)} dz$$
, where C is the circle $|z-i| = 2$.
(b) Evaluate $\int_C \frac{z-1}{(z+1)^2(z-2)} dz$, where C is the circle $|z-i| = 2$.

(b) Find the image of
$$|z-3i| = 3$$
 under the mapping $w = \frac{1}{z}$.

(c) Evaluate
$$P.V. \int_{-\infty}^{\infty} \frac{x \cos x}{x^2 + 9} dx.$$

Q.4 (a) Using Newton's divided difference formula, find a polynomial function 03 satisfying the following data:

	x	-4	-1	0	2	5
	f(x)	1245	33	5	9	1335
i.	TT1 . 1.1 1	1	1 0	c	01	1 1 0

(b) The table below gives the values of function y=tanx. Obtain the value of tan(0.40) using Newton's backward interpolation. 04

x	0.10	0.15	0.20	0.25	0.30
<i>y=tanx</i>	0.1003	0.1511	0.2027	0.2553	0.3093

(c) Use the power method to find the largest eigen value and corresponding 07 eigen vector of the matrix $A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \end{bmatrix}$.

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

- Q.4 (a) Find the root of the equation $x^2 4x 10 = 0$ correct to three decimal 03 places by using bisection method.
 - (b) Compute f(4) from the tabular value given x 2 3 5 7 f(x) 0.1506 0.3001 0.4517 0.6259 Using Lagrange interpolating polynomial.
 - (c) Solve the following system of equations by Gauss Jordan method: 07 10x + y + z = 12, 2x + 10y + z = 13, x + y + 5z = 7.
- Q.5 (a) The velocity v of a particle at distance s from point on its path is given by the following table: 03

s (meter)	0	10	20	30	40	50	60
v (meter/Sec)	47	58	64	65	61	52	38
Find the time taken to travel 60 meter, using Simpson's 1/3 rule. (Use							

$$v = \frac{ds}{dt}$$
).

- (b) Use the method of Regula Falsi to find the root of $x = e^{-x}$ correct to 04 three decimal places.
- (c) Use fourth order Runge Kutta method to find the value of y at x = 1 07

07

04

given that $y' = \frac{y - x}{y + x}$ such that y(0) = 1.(Take h = 0.5)

OR

- Q.5 (a) Use Gauss Seidel method to solve: 83x + 11y - 4z = 95, 7x + 52y + 13z = 104, 3x + 8y + 29z = 71. (b) $6 + (2x + 3)^{2} = 104$, 3x + 8y + 29z = 71.
 - (b) Evaluate the integral $\int_{-2}^{6} (1 + x^2)^{3/2} dx$ by the Gaussian formula for n = 3.

(c) Using Euler's method solve for y at x = 0.1 from $\frac{dy}{dx} = x + y + xy$, y(0) = 1, in five steps. 07
