GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV(New) EXAMINATION – SUMMER 2016

Subject Code:2143406 Date:26/			05/2016	
Sı	ıbied	et Name:Thermo Dynamics and Thermal Eng.		
Time:10:30 AM to 01:00 PM Total Mar				
In	struct	ions:		
	-	1. Attempt all questions.		
		2. Make suitable assumptions wherever necessary.		
		3. Figures to the right indicate full marks.		
			MARKS	
0.1				
Q.1	4	Short Questions	14	
	1	Define the term High grade energy.		
	2	Explain the term Low grade energy.		
	3	What is available energy?		
	4	What is meant by unavailability?		
	5	What is a steady flow process?		
	6	What are the causes of irreversibility of a process?		
	7	Explain the term reversibility		
	8	Explain the term irreversibility.		
	9 10	What do you understand by Ideal gas?		
	10 11	Describe the term isobaric process.		
	11	Define the term adiabatic process.		
	12	What do you understand by pure substance?		
	13	Explain the term internal energy.		
02	14 (a)	Define the term enthalpy.	03	
Q.2	(a) (b)	Distinguish between the terms 'change of state', 'path' and 'process'.	03 04	
	(\mathbf{b})	Explain the different types of thermodynamic systems. Define the specific heat at constant pressure and constant volume.	04 07	
	(c)	Show that for an ideal gas, $Cp - Cv = R$.	07	
		Show that for an ideal gas, $Cp = Cv = R$.		
	(c)	Explain the phase change processes for pure substances.	07	
Q.3		Explain what you understand by thermal equilibrium.	03	
V **		Explain the Second law of thermodynamics with examples.	03	
	(c) (c)	Explain briefly the Diesel cycle with the help of P-V diagram and	07	
	(0)	derive the expression for the ideal efficiency of Diesel cycle.	07	
		OR		
Q.3	(a)	_	03	
	()			
	(1)			
	(b)	Show that work and heat both are the path function and not a property.	04	
		2		
	(c)	A fluid at 200 kPa and 300 °C has a volume of 0.8 m ³ . In a frictionless	07	
		process at constant volume the pressure changes to100 kPa. Find the		
		final temperature and the heat transferred. If fluid is air.		
0.4	(a)	What is Joula Thomson acafficient? What is it are for an ideal and	0.2	
Q.4	(a) (b)	What is Joule-Thomson coefficient? What is it zero for an ideal gas?	03	
	(b)	Show that in a diffusion process at constant temperature the entropy increases and Gibbs function decreases.	04	
	(\cdot)		05	
	(c)	Derive Maxwell's equations.	07	

OR

(a)	What are the intensive and extensive properties? Explain in detail.	03
(b)	Explain the zeroth law of thermodynamics with example.	04
(c)	If γ is the ratio of specific heats of perfect gas, derive the relation PV ^{γ} – Constant. When a perfect gas is expanded adiabatically	07
(a)		03
	1 1	04
(0)	process.	V-
(c)	For the same compression ratio and heat rejection, which cycle is most	07
. /	efficient: Otto, Diesel or Dual? Explain with p-v and T-s diagrams.	
	OR	
(a)	Give the expression for reversible work done by a closed system if it interacts only with the surroundings	03
(b)	What are Helmholtz and Gibbs function?	04
(1))		
(b) (c)	In a certain process, a vapour while condensing at 420 °C, transfers heat to water evaporating at 250 °C. The resulting steam is used in a power cycle which rejects heat at 35 °C. What is the faction of the available energy in the heat transferred from the process vapour at 420	04 07
	(b) (c) (a) (b) (c) (a)	 (b) Explain the zeroth law of thermodynamics with example. (c) If γ is the ratio of specific heats of perfect gas, derive the relation PV^γ = Constant. When a perfect gas is expanded adiabatically. (a) Explain the modes of heat transfer with examples. (b) Derive the expression for maximum non expansion work for isobaric process. (c) For the same compression ratio and heat rejection, which cycle is most efficient: Otto, Diesel or Dual? Explain with p-v and T-s diagrams. OR (a) Give the expression for reversible work done by a closed system if it interacts only with the surroundings.
