GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV(New) EXAMINATION – SUMMER 2016

Subject Code:2143507 Subject Name:Fundamentals of Stoichiometry				Date:08/06/2016		
Ti	me:	10:30 AM to 01:00 PM tions:	Total Marks:	: 70		
		 Attempt all questions. Make suitable assumptions wherever no Figures to the right indicate full marks. 	-			
				MARKS		
Q.1		Short Questions		14		
	1	One Btu of heat is supplied to one kilogra				
		What will be the temperature rise for wat				
		(a) $0.252 \ {}^{0}C$ (c) $3.97 \ {}^{0}C$	(b) 1 ^o C (d) 4.186 ^o C			
	2					
	2 Two bottles A and B are filled with 100 g each of HNO ₃ and H ₂ S respectively. Which one of the following statement is true?					
		(a) Bottles A contains more	(b) Bottles B contains more			
		molecules	molecules			
		(c) Bottles A and B contain the same number of molecules	(d) Bottles A and B contain the same number of moles			
	3	The molarity of water in pure water is				
	-	(a) 1	(b) 18			
		(c) 55.55	(d) Infinity			
4 Two effluent streams are mixed. One stream contains 10 % other none. The combined stream contains 2 % salt. The ratis stream are						
		(a) 1:4	(b) 1:5			
		(c) 1:2	(d) 1:8			
	5	The vapour pressure of an organic liquid is given by the Antoine equation				
		$\ln P^s = 14.5463 - \frac{2940.46}{T - 49.19}$				
		Where P ^s is in kPa and T is in K. What substance	is the normal boiling point of the			
		(a) 373.2 K	(b) 1022.8 K			
		(a) 373.2 K (c) 345.4 K	(d) 283.7 K			
	6	The solubility of gases in liquid at a give				
		(a) Directly proportional to the	(b) Inversely proportional to			
		(c) Increases with increasing	(d) Not related to the			

7 Which of the following statements is true with regards to the percent saturation(PS) and relative saturation(RS) ?

```
(a) PS = RS (b) PS > RS
```

(c) PS < RS

- (d) PS and RS are not interrelated
- 8 Adiabatic saturation temperature of a vapour-gas mixture is
 - (a) The steady-state temperature attained by the liquid evaporating into gas
 - (c) The temperature attained by the gas when it is humidified to saturation in contact with the liquid at constant temperature
- (b) The temperature to which the gas can be cooled at constant
- (d) The temperature at which the existing vapour content is sufficient to saturate the gas
- **9** A mixture of ethyl acetate vapour and air has a relative saturation of 50% at 303 K and a total pressure of 100 kPa. If the vapour pressure of ethyl acetate at 303 K is 16 kPa, the percent of air is

(a) 92 %	(b) 45.7 %
(c) 50 %	(d) 8 %

10 Pure carbon is completely burnt in oxygen. The flue gas analysis is 70% CO₂, 20 % CO, and 10 % O₂. The percent excess oxygen used is

(a) 20	(b) 12.5
(c) 0	(d) 10

11 A butane isomerisation process produces 70 kmol/hr of pure isobutene. A purge stream, removed continuously, contains 85 % n-butane and 15 % impurity (mole %). The feed stream is n-butane containing 1% impurity. The flow rate of the purge stream will be

(a) 3 kmol/hr	(b) 4 kmo
---------------	-----------

(c) 5 kmol/hr

(b) 4 kmol/hr(d) 6 kmol/hr

12 The maximum flame temperature is attained

- (a) When the fuel and air are in stoichiometric quantities
- (b) When fuel is burned with an excess of pure oxygen
- (c) When stoichiometric amount of oxygen is used
- (d) When excess of air supply is provided
- 13 A batch adiabatic reactor at an initial temperature of 373 K is being used for the reaction $A \rightarrow B$. assume that the heat of reaction is -1 kJ/mol at 373 K and the heat capacity of both A and B to be constant and equal to 50 J/mol K. The temperature rise after a conversion of 0.5 will be

(a) 5 K	(b) 10 K
(c) 20 K	(d) 100 K

14 An insulated container holds 20 kg of water initially at 298 K. It is stirred by an agitator, which is made to turn by body weighing 40 kg slowly falling through a height of 4 m. the process is repeated 500 times. The acceleration due to gravity is 9.8 m/s². Neglecting the heat capacity of the agitator, the temperature attained by the water is

(a) 313.3 K	(b) 307.4 K
(c) 299.8 K	(d) 298 K
C (1) 1' '.'	(2) (2) (1)

Q.2 (a) Define : (1) limiting reactant (2) Amagat's law (3) partial pressure

03

- (b) A weight of 1.10 kg of Carbon dioxide occupies a volume of 33 liter at 300 K.Using the Van der Waals equation of state, calculate the pressure. Data: For CO_2 , take $a = 3.60 [(m^3)^2 \cdot kPa]/(kmol)^2$ and $b = 4.3 \times 10^{-2} m^3/kmol$
- (c) The heat capacity of sulphur is Cp = 15.2 + 2.68T, where Cp is in J/(gmol **07** K) and T is in K. Convert that Cp is in cal/(gmol ⁰F) with T in ⁰F.

OR

- (c) The average molecular weight of the flue gas sample is calculated by two different engineers. One engineer used the correct molecular weight of N₂ as 28, while the other used an incorrect value of 14. They got the average molecular weight as 30 and the incorrect one as 18.74. Calculate the % volume of N₂ in the flue gases. If the remaining gases are CO₂ and O₂ calculated their compositions also.
- Q.3 (a) Explain Recycle, Purge, bypass with suitable diagram 03
 - (b) The gaseous reaction A = 2B + C takes place isothermally in a constant-pressure reactor. Starting with a mixture of 75 % A and 25 % inerts (by volume), in a specified time the volume double. Calculate the conversion achieved.
 - (c) Fifty kilograms of dry sodium bicarbonate is to be crystallized and removed from 1000 kg of a saturated solution at 333 K. To what temperature the solution be cooled, if the solubility data is as follows?

Temperature	333	323	313	303	293	283
(K)						
Solubility	16.4	14.5	12.7	11.1	9.6	8.2
kg bicarbonate						
100 kg water						

OR

- Q.3 (a) Draw a P-T chart for water. Label the following clearly: vapour pressure curve, dew point curve, saturated region, superheated region, subcooled region and triple point Show where vapourization, condensation and sublimation take place by arrows.
 (b) A soap plant produced raw soap containing 50 % moisture. This is to be dried 20 % moisture before it is pressed into cakes for sale. How many 100
 - dried 20 % moisture before it is pressed into cakes for sale. How many 100 g soap piece can be obtained from 1000 kg of original raw soap ?
 - In the BASF oil quench process to manufacture acetylene; pure oxygen and 07 (c) pure methane are fed to the acetylene burner. The cracked gas from the burner has the following composition: H₂: 56.5 %, CH₄: 5.2 %, C₂H₄: 0.3 %, C₂H₂: 7.5 %, C₃H₆: 0.5 %, CO: 25.8 %, CO₂: 4.0 %, and O₂:0.2 % (mole % on dry basis). Assume that formation of the other compounds, such as ammonia, is negligible. For 100 kmol cracked gas, calculate (a) methane requirement (b) oxygen requirement (c) production of water Define : (1) Yield (2) selectivity (3) 0 API 03 **(a)** Heat capacity for gaseous SO₂ is given by the following equation: **(b)** 04 $C^{0} = 43.458 + 10.634 \times 10^{-3}T - 5.945 \times 10^{5}/T^{2}$ Calculated the heat required to raise the temperature of 1 kmol pure SO₂ from 300 K and 1000 K. Calculated the enthalpy of zinc vapour at 1200 °C and atmosphere 07 (c) pressure, relative to solid at 10° C. Data: Melting point of Zn = 419 ⁰C (at 1 atm) Boiling point of $Zn = 907 \ ^{0}C$ (at 1 atm)

Mean C_p of solid Zn = 0.105 kcal/kg ${}^{0}C$

0.4

Mean C_p of liquid $Zn = 0.109 \text{ kcal/kg} {}^{0}\text{C}$ Heat of fusion of Zn = 1660 kcal/kgmoleHeat of vaporization of Zn = 26900 kcal/kgmoleMean Cp of Zinc vapour = 4.97 kcal/kgmole ${}^{0}\text{C}$ Atomic weight of Zn = 65.4 kg/kgmole

OR

(a) Define: (1) single pass conversion (2) overall conversion (3) 0 Be

0.4

(b) Using Watson equation, calculate latent heat of vaporization of Acetone at 04 313K

T1	Component	Latent	Tc	n
(boiling	component	heat of		
		vap at T_1 ,		
point temp)		K		
(emp)		(KJ/kmol)		
329.4	Acetone	29121	508.1	0.38
	(C_3H_6O)			

- (c) A heat exchanger for cooling a hot hydrocarbon liquid uses 10000 kg/h of cooling water, which enters the exchanger at 294 K. The hot oil at the rate of 5000 kg/h enters at 423 K and leaves at 338 K and has an average heat capacity of 2.5 kJ/kg K. Calculate the outlet temperature of water.
- **Q.5** (a) Define : (1) Heat Capacity (2) Enthalpy (3) Internal Energy
 - (b) Calculate the heat of reaction for the esterification of ethyl alcohol with acetic acid if the standard heats of combustion are : ethyl alcohol: -1366.91 kJ/mol, acetic acid: -871.69 kJ/mol, ethyl acetate: -2274 kJ/mol.
 - (c) Calculate the heat of reaction at 700 K using the following reaction.

$$SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$$

Data: $Cp^0 = a + bT + cT^2 KJ/Kmol K$ Comp. $\Delta H^0_{f,298 K}$ a $b \times 10^3$ $c \times 10^6$

comp.	ДП 1,296 К	u	0 / 10	C A 10
	(kJ/mol)			
SO_2	-296.81	24.77	62.95	-44.26
O ₂	0.0	26.026	11.755	-2.3426
SO ₃	-395.72	22.04	121.6	-91.87
			OR	

Q.5 (a) Define: (1) Wet bulb temperature (2) Absolute humidity (3) bubble point
(b) Calculate the heat of formation of CHCl₃ from the following data:
04

$$CHCl_{3} + \frac{1}{2}O_{2} + H_{2}O \rightarrow CO_{2} + 3HCl, \Delta H = -509.93 \ kJ \qquad \dots (1)$$

$$H_{2} + \frac{1}{2}O_{2} \rightarrow H_{2}O, \Delta H = -296 \ kJ \qquad \dots (2)$$

$$C + O_{2} \rightarrow CO_{2} \ \dots (3)$$

$$CO_{2} + 3HCl \rightarrow CHCl_{3} + \frac{1}{2}O_{2} + H_{2}O, \Delta H = -509.93 \ kJ \ \dots (4)$$

(c) Calculate the theoretical flame temperature for CO when burned with 100 % excess air when both the reactants are at 373 K. the heat capacities (J/mol K) may be assumed constant at 29.23 for CO, 34.83 for O_2 , 33.03 for N_2 and 53. 59 for CO₂. The standard heat of combustion at 298 K is - 298.99 kJ/mol CO.

4

03

03

07