GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-V (NEW) - EXAMINATION – SUMMER 2016				
Subject Code:2150102			Date:06/05/2016	
Subject Name:Fundamentals of Turbo Machines				
Time:02:30 PM to 05:00 PM			Total Marks: 70	
Instructions:				
	2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a)	 Following data refers to mean section of free vortex axial turbine stage hub diameter 460mm, tip diameter 780mm, rotational speed 6000rpm, absolute velocity at rotor entry is 267 m/s, air angles at rotor entry and exit 75° and 45° respectively, axial velocity is constant and is 70m/s, calculate followings for the hub section. 1. Air angles and blade angles, 2. Degree of reaction, 3. Flow coefficient, 4. Loading coefficient and 5. Work done by the turbine 	07	
	(b)	•	07	
Q.2	(a)	Explain in the detail the losses in turbomachines.	07	
	(b)	Compare turbomachines and reciprocating machines and axial machines and radial machines.	07	
	(b)	Classify the turbomachines and list the differences between axial and radial turbomachines.	07	
Q.3	(a)	What is degree of reaction? Obtain relations between different velocities and angles in 50% degree of reaction stages of an axial compressor. Also draw velocity triangles for the same.	07	
	(b)	Draw and explain h-s diagram for the Axial turbine stage. OR	07	
Q.3	(a)	A ninety degree IFR turbine stage has the following data. Total to static pressure ratio: 3.5 Exit pressure: 1bar Stagnation temperature at entry: 650° C Blade to gas speed ratio $\sigma = 0.66$ Rotor diameter ratio: 0.45 Rotor speed :16000rpm Nozzle exit air angle: 20° Calculate: 1) Rotor diameter 2) Rotor blade exit air angle 3) work developed and stage efficiency	07	
	(b)	Draw the velocity triangle of outward flow reaction turbine.	07	

(a) Explain the general matching procedure for the jet engines. 07
(b) Define utilization factor and derive the expression for 07 Q.4

maximum utilization factor for 50% reaction stage.

OR

07

- Axial flow compressor has following data: 0.4 (a) Temperature and pressure at inlet : 370°C and 103kpa Degree of Reaction : 0.50 Mean blade ring diameter : 370mm Rotational speed :20000rpm Blade height at entry : 60mm Air angle at rotor and stator exit : 25° Axial velocity : 180m/s Work done factor : 0.88 Stage efficiency : 0.85 Mechanical efficiency : 0.97 Calculate: 1. Air angles at rotor and stator inlet 2. Mass flow rate
 - 3. Specific work
- Q.4 (b) Draw and explain performance charts for axial flow 07 turbines and give concluding remarks.
- Q.5 (a) Write a short note on stalling and surging of compressor. 07
 - (b) Discuss the axial turbine stage with radial equilibrium 07 condition.

OR

- Q.5 (a) Draw velocity triangles for the three types of impeller for 07 centrifugal compressor.
 - (b) Discuss zero reaction stage, 50% reaction stage and the 07 100% reaction stage in detail.
