GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V (NEW) - EXAMINATION - SUMMER 2016

Subject Code:2150503

Date:09/05/2016

Subject Name: Chemical Engineering Thermodynamics - II

Time:02:30 PM to 05:00 PM

Total Marks: 70

Instructions:

(b)

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Discuss the consistency tests for VLE data by using Gibbs-Duhem equation. 07
 - (b) The following table gives composition v/s total pressure data for the system 07 chloroform (1)/ethanol (2) at 328 K:

X1	0.0331	0.9652
P, kPa	40.84	84.88

Vapour pressures of chloroform and ethanol at 328 K are 82.35 kPa and 37.30 kPa respectively. Estimate the constants in the Margules equation.

- Q.2 (a) Show that for a binary system, Henry's law is valid for component '1' then 07 Lewis Randall rule is valid for component '2'.
 - (b) The azeotrope of the ethanol-benzene system has a composition of 44.8 mol% ethanol with boiling point of 341.4 K at 101.3 kPa. At this temperature, the vapor pressure of benzene is 68.9 kPa and the vapor pressure of ethanol is 67.4 kPa. What are the activity coefficients in a solution containing 10% ethanol. (Use VanLaar equations).

OR

07

Q.3 (a) Define fugacity and fugacity coefficient. Discuss any two methods to evaluate 07 fugacity coefficient.

Write a brief note on retrograde condensation and its application.

(b) Define azeotropes and explain minimum boiling and maximum boiling **07** azeotropes with suitable examples and neat diagrams.

OR

Q.3 (a) Mixtures of n-Pentane (1) and n-Heptane (2) conform to ideal solution 07 behaviour. The vapour pressures of pure components are adequately described by Antoine equations. Prepare P-x-y diagram at 70^oC.

Compound	А	В	С
n-Pentane	6.8763	1075.78	233.2
n-Heptane	6.8939	1264.37	216.64

Use Antoine equation: $log_{10}p_i^{sat} = A_i - B_i/(t + C_i)$ where pressure p_i^{sat} is in torr and temperature t is in ${}^{0}C$.

- (b) What is gamma-phi formulation of VLE? Draw block diagrams for the BUBL P 07 and DEW P calculations. Write all necessary equations.
- Q.4 (a) Define partial molar properties and explain various methods for evaluation of 07 partial molar properties.

(b) The enthalpy of a binary liquid system of species 1 and 2 at fixed T and P is or represented by the equation: $H = 400 x_1 + 600 x_2 + x_1 x_2 (40x_1 + 20x_2)$ where H is in J mol⁻¹ Determine expressions for \overline{H}_1 and \overline{H}_2 as functions of x_1 , numerical values for the pure-species enthalpies H_1 and H_2 , and numerical values for the partial enthalpies at infinite dilution \overline{H}_1^{∞} and \overline{H}_2^{∞} .

OR

Q.4	(a)	Derive Margules equations from the following expression:		
		$\frac{G^E}{x_1 x_2 RT} = A_{21} x_1 + A_{12} x_2$		
	(b)	Explain T-x-y diagram for partial miscible system.	07	
Q.5	(a)	Explain the effect of temperature and pressure on equilibrium constant.	07	
	(b)	Derive from the first principles, $\Delta G^0 = -RT \ln K$.	07	
OR				
Q.5	(a)	Discuss the criteria of chemical equilibrium.	07	
	(b)	Write in brief a note on feasibility of chemical reactions.	07	
