Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI (NEW) - EXAMINATION - SUMMER 2016

Subject Code:2160501 Date:06/05/2016

Subject Name: Mass Transfer Operation - II

Time: 10:30 AM to 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) With neat sketch discuss various types of cooling towers.
 - (b) Explain Azeotropic distillation with example. 07
- Q.2 (a) Derive q-line equation for feed tray location.
 - (b) With neat sketch explain positive deviation from ideality. 07

OR

- (b) Discuss in detail steam distillation and compare it with vacuum distillation. 07
- Q.3 (a) Discuss differential distillation and derive Rayleigh's equation for binary 07 distillation.
 - (b) A gas (B) benzene (A) mixture is saturated at 1 std atm, 50°C. Calculate the absolute humidity if B is (a) nitrogen and (b) carbon dioxide. Vapor pressure of nitrogen at 50°C = 0.362 std atm

OR

- Q.3 Explain: (1) Relative volatility (2)Raoult's law (3) Bound moisture 14 (4)Free Moisture (5) Dry Bulb Temperature(6) Dew Point (7) Lewis relationship
- A continuous distillation column is to separate 50 Kmol/hr of feed mixture having 65% Benzene (A) and 35% Toluene (B). Top product contains 95% Benzene and Bottom product contains 95% Toluene (by mole). Feed is saturated liquid at its bubble point. Average relative volatility is 2.44. If reflux ratio R= 2.25 R_{min}, determine feed tray location and number of theoretical stages by Mccabe-Thiele method.

OR

Q.4 A batch of solid for which the material is dried from 25 to 9% moisture has the initial weight of solid to be 160 kg. The drying surface is 1 m2/40 kg dry weight. Determine the time of drying for constant rate period and falling rate period using graphical method. The data are as follows:

X	0.25	0.2	0.18	0.16	0.14	0.12	0.1	0.09	0.08	0.07	0.06
N	0.3	0.3	0.266	0.239	0.208	0.18	0.15	0.097	0.07	0.043	0.025

14

Where X= kg moisture / kg dry solid N= rate of drying x 10^3 , kg evaporated /m²-sec.

` ′	1 1	07 07
	OR	
(a)	Explain with neat sketch principle and working of rotary dryer.	07
(b)	Write Freundlich equation and explain its application for two stage cross current adsorption.	07
	(b) (a)	OR (a) Explain with neat sketch principle and working of rotary dryer. (b) Write Freundlich equation and explain its application for two stage
