GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI (NEW) - EXAMINATION - SUMMER 2016 Subject Code:2161304 Date:09/05/2016 Subject Name: Biological Processes for Wastewater Treatment

Time: 10:30 AM to 01:00 PM **Total Marks: 70**

Instructions:

Q.3

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 0.1 Draw the BOD progression curve and explain the different phases of the 07 (a) Same **(b)** Enlist and explain the factors affecting the BOD test. 07 Q.2 Derive the relationship to find the amount of methane per gram of COD. 07 **(a)** Explain the objectives of biological treatment 07 **(b)** OR **(b)** Explain role of microorganisms in wastewater treatment. 07 07
- Q.3 Explain in detail anaerobic sludge digestion. **(a)**
 - Determine the values of bio kinetic constants using the data given in table derived 07 **(b)** from the laboratory experiments carried out on CFSTR model of an activated sludge process without recycle.

Unit	Influent	Rector	Detention	Rector	
no.	substrate	substrate	time θ	biomass	
	conc. S	conc. S	(days)	conc. X	
	(mg/L)	(mg/L)		(mg/L)	
1	350	12	3.8	132	
2	350	20	2.6	130	
3	350	34	1.8	132	
4	350	60	1.3	123	
5	350	70	1.2	119	

- OR Explain in detail mechanism of high rate anaerobic digester.
- **(a)** A series of BOD determination was made on a sample to calculate ultimate BOD **(b)** and rate constant. Incubation was carried out on a 5% dilution of the sample at 20 °C when initial DO for the samples and blank was 9.17 mg/l., determine L & K by using least square method.

Day	Final DO in Blank BOD ir	
	sample, mg/l	mg/l
1	7.1	9.0
2	6.1	9.0
3	5.1	8.9
4	4.2	8.9
5	3.9	8.8
6	3.5	8.7
7	3.0	8.6

With the help of a neat sketch explain working of rotating biological contactor **Q.4** (a) Explain the mechanism by which substrate removal takes place in an **(b)** attached growth process

07 07

07

07

OR (i) Explain single stage and two stage trickling filter with sketch. 07 Q.4 **(a)** (ii) Explain when an aerobic conditions are developed in a trickling filter. Define: (1) Specific growth rate (2) Yield coefficient (3) Endogenous **(b)** 07 decay coefficient (4) Maximum substrate utilization rate constant Q.5 **(a)** Write a differentiate between oxidation ditch & oxidation pond. 07 **(b)** Discuss the fundamental considerations in the application of natural treatment 07 systems. OR Q.5 Write a short note: constructed wetlands 07 **(a)** Write down the mass balance for CFSTR with recycle and hence 07 **(b)** Derive the equation for finding biokinetic constant.
