Seat No.:	Enrolment No

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI (NEW) - EXAMINATION - SUMMER 2016

S	ubjec	ct Code:2162003 Date:06/05/20	16
S	ubjec	ct Name: Control of Electric Drives	
_		10:30 AM to 01:00 PM Total Marks:	: 70
In	struct		
		 Attempt all questions. Make suitable assumptions wherever necessary. 	
	,	3. Figures to the right indicate full marks.	
2.1	(.)		07
Q.1	(a)	Explain why Electrical Drives are widely used? State its Advantage and disadvantages.	07
	(b)	State essential parts of Electrical Drives. What are the function of power	07
		modulator.	
Q.2	(a)	Derive the Equivalent values of drives parameter for Loads with Rotational	07
	(b)	Movement. A motor is used to drive a hoist. Motor characteristics are given by	07
	(8)	Quadrants I,II and IV: T=200 - 0.2N,N-m	0.
		Quadrants II,III and IV: $T = -200 - 0.2N,N-m$	
		When hoist is loaded, the net load torque T ₁ =100 N-m and when it is unloaded,	
		net load torque T ₁ =-80 N-m. Obtains the equilibrium speeds for operation in all the four quadrants.	
		OR	
	(b)	A motor-load system has following details: Quadrant I and $II,T = 400$ -	07
		0.4N.Motor is coupled to an active load torque $T_1=\pm 200$ N-m. Calculate the	
		speeds for motoring and braking operations in the forward direction. When	
		operating in quadrants III and IV, $T = -400 - 0.4N$, N-m. Calculate the equilibrium speed in quadrant III.	
Q.3	(a)	Discuss the nature and classification of load torques.	07
•	(b)	Explain what do you understand by the steady-state stability? What is main	07
		assumption?	
0.2	(-)	OR	07
Q.3	(a)	A drive has following equations for motor and load torques:	07
		$T = (1+2wm)$ and $T_1 = 3\sqrt{wm}$	
		Obtain the equilibrium points and determine their steady state stability.	
	(b)	Draw the waveform of 1-phase fully controlled converter with R-L-E load with	07
		conduction table & performance parameter.	
Q.4	(a)	Explain the different control strategy for the varying the duty cycle in chopper.	07
~··	(b)	Derive the expression for the steady state time domain analysis of step down	07
	,	chopper.	
		OR	
Q.4	(a)	Explain the armature control method and field control method for DC motor.	07
0.5	(b)	Explain the speed control method of 3-phase induction motor.	07
Q.5	(a) (b)	Explain the operation of single stack variable reluctance stepper motor. Derive the waveform of 3-phase fully controlled converter with R-L-E load	07 07
		with conduction table & performance parameter.	07
		OR	
Q.5	(a)	A dc motor is to be selected for driving a load having a large torque of short	07
		duration followed by long no-load period. A flywheel of suitable inertia is already mountain on the load shaft. Explain the role of flywheel to overcome	

the load equalization in dc motor drive.

(b) A step up chopper has input voltage of 220 V and output voltage of 660V. If the conducting time of thyristor chopper is 100 μ s, compute the pulse width of output voltage.

07