Enrolment No.

Date:06/05/2016

Total Marks: 70

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VI (NEW) - EXAMINATION – SUMMER 2016

Subject Code: 2163609

Subject Name: Basics of mass transfer

Time: 10:30 AM to 01:00 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Oxygen (A) is diffusing through carbon monoxide (B) under steady state 07 conditions, with the carbon monoxide non-diffusing. The total pressure is $1.0 \times 10^5 \text{ N/m}^2$, and the temperature 0° C. The partial pressure of oxygen at two planes 2 mm apart is, respectively, 13000 and 6500 N/m². The diffusivity for the mixture is $1.87 \times 10^{-5} \text{ m}^2$ /s. Calculate the rate of diffusion of oxygen in kmol/s through each square meter of the two planes.
 - (b) Derive the steady state molecular diffusion equation for gas for both the cases. 07
- Q.2 (a) Calculate the rate of diffusion of acetic acid (A) across a film of non-diffusing water (B) solution 1 mm thick at 17°C when the concentrations on opposite sides of the film are, respectively, 9 and 3 wt % acid. The diffusivity of acetic acid in the solution is 0.95 * 10⁻⁹ m²/s. The density of 9 % solution is 1012 kg/m³, The density of 3 % solution is 1003.2 kg/m³
 - (b) Explain methods of conducting the mass transfer operations. 07

OR

- (b) Explain Direct contact of two Immiscible phases. 07
- Q.3 (a) Explain Film theory in detail with all assumptions and derivation. 07
 - (b) The gas-phase mass transfer coefficient for the evaporation of a drop of ethyl alcohol in a stream of air at 300 K and 1.2 bar pressure is $k_G = 2.4 * 10^{-6}$ kmol/(s)(m²)(mm Hg).
 - (1) If the diffusivity of alcohol in air is 0.102 cm²/s at 0^oC, estimate the thickness (in mm) of the stagnant gas-film. Vapor pressure of alcohol = 0.0877 bar at 300 K. (P_{A2} =0). R=0.08317 (m³)(bar)/(kmol)(K)
 - (2) Express k_G in lbmol/(ft²)(min)(psi) (Take 1 kmol= 2.2046 lbmol)

OR

Q.3 (a) Explain Penetration theory with all the detail.

07

(b) The equilibrium distribution of a solute A between air and water is given by y=1.2x

At a certain point the concentration of solute A in the bulk air is 0.04 mole fraction and that in the bulk aqueous phase is 0.025 mole fraction.

- 1) Calculate the overall gas-phase and the overall liquid-phase driving forces for mass transfer?
- 2) At the same point, the local individual mass transfer coefficients for the transport of A are, $k_y=7.2 \text{ kmol/(h)}(m^2)(\Delta y)$ and $k_x=4.6 \text{ kmol/(h)}(m^2)(\Delta x)$. Calculate (a) the interfacial concentrations in both the gas-phase and liquid phase (b) The overall mass transfer coefficients, Kx and Ky (c) The local mass flux, N_A.
- Q.4 (a) Derive Mass transfer coefficients of liquid for two different cases.

Q.4

Q.5

(b) 200 moles of benzene & toluene containing 55 mole% benzene is subjected to a differential distillation at atmospheric pressure. The composition of the benzene in the residue is 30 mole%. Calculate the total moles of the mixture distilled. (Graphical method). Relative volatility is 1.8.

								-	
	Х	0.25	0.3	0.35	0.4	0.45	0.5	0.55	0.6
					OR				
(a)	Explain differential distillation in detail and derive Rayleigh equation.								
(b)	Explain drying rate curve with all graphs and rate equation.								
(a)	Derive film the	the overa ory.	ll mass t	ransfer co	oefficien	t (Ky and	l Kx) wi	th the hel	p of two
(b)	(1) Explain equilibrium between phases with example and three cases.								
	(2) Defi	ne the ter (i		t number					
			i) Atmoly						
			-	ential con	tact oper	ration			

OR

Q.5 (a) A continuous counter-current dryer is used to dry 500 kg dry solid/h containing 0.035 kg total moisture/ kg dry solid to a value of 0.0017 kg total moisture/ kg dry solid. The granular solid enters at 25°C & leaves at 60°C. The heating medium is air which enters at 84.2°C, has a humidity of 0.0175 kg H₂O/kg dry air & leaves at 32.8°C. Calculate the air flow rate & the outlet humidity, assuming the heat losses from the dryer to be 9500 kJ/hr. The constant heat capacity of the dry solid is 1.465 kJ/kg.K Take reference temp. $0^{0}C$, $\lambda = 2501$ kJ/kg

(b)	(1) Explain Constant pressure Tx-y diagram with neat sketch.				
	(2) Define the terms:	03			

- (i) Unbound moisture
- (ii) Moisture content
- (iii) In which case flux N_A will equal to flux J_A ?

07