GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-1st / 2nd EXAMINATION- WINTER 2015

Subject Code: 110008		Code: 110008	Date:28/12/2015	
Su	Subject Name: Mathematics – 1			
Time: 10:30am to 01:30pm			Total Marks: 70	
Ins	structio			
	1. 2.	Attempt any five questions.		
	2. 3.	· · · · · · · · · · · · · · · · · · ·		
Q.1	(a)	Using L'hospital rule, evaluate following limits:		
		$1. \lim_{x \to 0} \frac{\tan x - \sin x}{x^2}$		0.2
				03
		2. $\lim_{x \to 1} (1-x) \tan\left(\frac{\pi x}{2}\right)$		02
		3. $\lim_{x \to 0} x^{n-1} \ln x; n > 1$		03
	(b)	Test the convergence or divergence of following series:		
		1. $\sum \frac{1}{n!}$		03
		$2. \sum_{n=1}^{\infty} \frac{1}{\left(1+\frac{1}{n}\right)^{n^2}}$		03
		$\langle \cdot \cdot \cdot \rangle^2$		

Q.2 (a) If
$$u = x^2 y + y^2 z + z^2 x$$
, then prove that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = 3\left(u_{xx} + u_{yy} + u_{zz}\right)$ 07

(b) State Euler's theorem for homogeneous function and verify it for 07 $u = \sqrt{x} + \sqrt{y} + \sqrt{z}$ by direct differentiation.

Q.3 (a) Evaluate
$$\int_{0}^{a} \int_{\sqrt{ax}}^{a} \frac{y^2 dy dx}{\sqrt{y^4 - a^2 x^2}}$$
 by changing the order to integration. 07

(b) 1. Find the volume common to the cylinders $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$ 05

- 2. Using double integration find area of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 02
- **Q.4** (a) Verify Divergence theorem for $\overline{F} = (x^2 yz)i + (y^2 zx)j + (z^2 xy)k$ taken 06 over the rectangular parallelepiped 0 < x < a; 0 < y < b; 0 < z < c
 - (b) Do as directed
 - 1. Evaluate $\int_{C} (x+y)dx x^{2}dy + (y+z)dz$ where *C* is $x^{2} = 4y$, z = x, $0 \le x \le 2$ 04
 - 2. Find the directional derivative of $f(x, y, z) = xy^2 + yz^3$ at the point (2,-1,1) in the direction normal to the surface $x \log z y^2 = -4$ at (-1,2,1)

- Q.5 (a) The pressure P at any point (x, y, z) in the space $P = 400xyz^2$. Find the highest 05 pressure at the surface of a unit sphere $x^2 + y^2 + z^2 = 1$
 - (b) Find the equation of tangent plane and the normal line to the surface 05 $2x^2 + y^2 + 2z = 3$ at the point (2,2,1)
 - (c) Find out linearization of $f(x, y, z) = x^2 + 2y^2 + 3z^2 + 6$ at (1,1,1) 04

Q.6 (a) If
$$a < b$$
 then prove that $\frac{b-a}{1+b^2} < \tan^{-1}b - \tan^{-1}a < \frac{b-a}{1+a^2}$ 05

(b) Using Taylor's expansion theorem, expand $f(x) = e^x$ at x = 0 05 (c) Prove that $\int_{0}^{\infty} \cos x \, dx$ converges

(c) Prove that
$$\int_{1}^{1} \frac{\cos x}{x^2} dx$$
 converges. 04

Q.7 (a) Expand
$$e^x \cos y$$
 at $\left(1, \frac{\pi}{4}\right)$ 05

(**b**) Test convergence of following series
$$\sum_{n=1}^{\infty} \left(\frac{n+1}{n+2}\right)^n x^n; x > 0$$
 05

(c) Find the point of inflexion on the curve
$$y = 4(x+3)^3$$
 04
