Seat No.: _____

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-I & II EXAMINATION – WINTER 2015

•	Code: 110009 Date:21/12/2015 Name: Maths-II	.2/2015				
Time: 10:30am to 01:30pm Total Marks: 70						
Instr	1. 2.					
Q.1	(a)	1.Let $u = (2, -2, 3), v = (1, -3, 4)$ then	03			
		a. Find the norm of $u + v$.				
		b. Find the distance between u and v.				
		c. Find u · v				
		2. Define basis of R^3 and Check the following set S is a basis of R^3 or not.	04			
		$S = \{(1, 2, 1), (2, 1, 0), (-3, 2, 1)\}.$				
	(b)	Define Vector Space. Let V be the set of all order pair (x, y) of real numbers with operations $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$ and	07			
		$K(x_1, y_1) = (K^2 x_1, K^2 y_1)$. Check whether V is a Vector Space over R or not.	0.			
Q.2	(a)	a) Find the inverse of A (if possible) using row operations, Where				
		$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ -4 & 2 & -9 \end{bmatrix}$				
	(b)	Determine which of the following are subspace of V.	07			
		a. All vectors of the form (x, 0, 0), where $V = R^3$.				
		b. All matrices of the form $\begin{bmatrix} x & y \\ z & w \end{bmatrix}$, where $x + y + z + w = 0$ and V=M ₂₂ .				
Q.3	(a)	Find bases for the row and column space of	07			
		$A = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & -1 & 9 & 7 \\ -1 & 3 & -4 & 2 & -5 & -4 \end{bmatrix}$				

(b) Solve the linear system

$$-x + y + 2z = 2,3x - y + z = 6, -x + 3y + 4z = 4$$

Q.4 (a) Find the bases for the Eigen space of

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

- (b) Determine whether the following functions are Linear Transformation. Justify 07 your answer.
 - a. Let T: M33 \rightarrow M₃₃, Defined by T (A) = A^T.
 - b. Let T: $R^3 \rightarrow R^3$, Defined by T (x, y, z) = (x², y², z²).
- Q.5 (a) Consider the basis $S = \{(-2,1),(1,3)\}$ for R^2 and $T:R^2 \rightarrow R^3$ be the Linear 07 Transformation such that T(-2,1) = (-1, 2, 0) and T(1, 3) = (0, -3, 5)Find a formula for T(x, y) and find T(2, -3).
 - (b) Define Real inner product Space. Let Vector Space P₂ have the inner product 07 $\langle p,q \rangle = \int_{-1}^{1} p(x)q(x)dx$
 - a. Find the norm of p for p = 1 and $p = x^2$.
 - b. Find the distance between p = 1 and q = x.
- **Q.6** (a) Let $S = \{(1, 2, 1), (2, 9, 0), (3, 3, 4)\}$ be the basis for \mathbb{R}^3 . 07
 - a. Find the co-ordinate vector of v = (5, -1, 9) with respect to S.
 - b. Find the vector v in \mathbb{R}^3 whose co-ordinate vector with respect to S is $(v)_s = (-1, 3, 2)$.
 - (b) Define: Symmetric Matrix and Orthogonal Matrix.

Are the following matrices symmetric or orthogonal?

 $1.\begin{bmatrix}1 & 0 & 0\\ 0 & \cos\theta & -\sin\theta\\ 0 & \sin\theta & \cos\theta\end{bmatrix} \quad 2.\begin{bmatrix}1 & 2\\ 2 & 1\end{bmatrix} \quad 3.\begin{bmatrix}1 & 2 & 3\\ 4 & 5 & 6\end{bmatrix}$

07

07

Q.7	(a)	[4	2	2]	07
-		Find an orthogonal matrix P that diagonalizes $A=2$	4	2	
		2	2	4	

(b) Let R^3 have the Euclidean inner product. Use the Gram-Schmidt process to transform the basis $S = \{(1, 0, 0), (3, 7, -2), (0, 4, 1)\}$ into an orthonormal basis.
