GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-I & II EXAMINATION – WINTER 2015

	Subject Code: 110010Date:05/01/201Subject Name: Mechanics of SolidsTotal Marks: 7Time: 10:30am to 01:00pmTotal Marks: 7Instructions:Total Marks: 7		
Ti			
	1. 2.	Attempt any five questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	 Fill in the blanks with appropriate answer from the given choices: 1) Mass is a quantity. a) Vector b) Scalar c) Tensor 2) Two equal and opposite parallel forces, whose lines of action are not same, form a a) Shear Force b) Couple c) Principal Stress 3) Law of Parallelogram of forces is applicable to forces. a) Two Parallel b) Two concurrent c) Three Parallel 4) In 'Method of Joints' for truss, forces acting at a joint are a) Concurrent b) Parallel c) Non-Concurrent c) As per Hooke's law, Within elastic limit, Stress is proportional to Strain. a) Directly b) Inversely c) Not 6) Lateral Strain and Linear Strain are of nature. a) Same b) Opposite 7) A Hinge support offers support reactions. a) One b) Three c) Two 8) When a block is on the verge of sliding down the inclined plane, Friction is	08
	(b)	Answer ANY THREE:	06
		1) Write Characteristics of a Force.	

- 2) Conditions for Perfect Truss, Deficient Truss and Redundant Truss explaining the notations used.
- 3) State Lami's Theorem
- 4) Define Angle of Repose.
- Q.2 (a) Find the Resultant force of a force system shown in FIG.1. Also sketch the 07 Resultant force.
 - (b) Find the Magnitude, Direction and Location with respect to 'A' of the Resultant 07 force for a Non-Concurrent force system shown in FIG.2.

- Q.3 (a) Determine the Member forces in all members of a Truss shown in FIG.3. Use 07 any Method.
 - (b) A 6m long uniform ladder of weight 1000N is resting on a horizontal surface 07 and leaning against a smooth vertical wall. It makes 60° inclination with horizontal. It is on the verge of sliding when a man of weight 500N climbs upto 2m along the ladder from the foot of the ladder. Calculate co-efficient of friction between ladder and Floor.
- Q.4 (a) For the lamina (plane body) shown in FIG.4., locate centroid. 07
 - (b) For the lamina (plane body) shown in FIG.4., calculate Moment of Inertia 07 about base AB.
- **Q.5** (a) A bar of Varying section (Stepped bar) is subjected to concentrated axial loads 07 as shown in FIG.5. Take $E = 2 \times 10^5 \text{ N/mm}^2$, Calculate:
 - 1) Load 'P' required for equilibrium.
 - 2) Stress in each segment
 - 3) Deformation of each segment and Total deformation of the bar.
 - (b) A cube of 150mm x 150mm x 150mm is subjected to an axial Tensile forces of 1000kN, 800kN and 600kN along X-dir, Y-dir and Z-dir respectively. Taking Poisson's ratio v = 0.25 and Modulus of Elasticity, $E = 2 \times 10^5 \text{ N/mm}^2$, Determine:

1) Change in each dimension

2) Change in Volume

3) Stress in each direction

- Q.6 (a) For the beam shown in FIG.6., Find Support Reactions.
 (b) For the beam shown in FIG.6., Draw Shear Force and Bending Moment
 09
- Q.7 (a) A simply supported beam has T-cross section as shown in FIG.7. It is subjected 07 to Bending Moment of 50kN-m. Find Bending Stress at extreme fibers and
 - draw bending stress distribution across the section.(b) A certain point in a strained material is subjected to following stresses: 05
 - a) Major stress, $\sigma_x = 100$ MPa (Tensile),
 - b) Minor stress, $\sigma_y = 60$ MPa (Tensile)
 - c) Shear stress, $\tau = 40$ MPa

Determine Principal Stresses and Location of Principal Planes

(c) Define Principal Stress and Principal Plane. 02

Figures

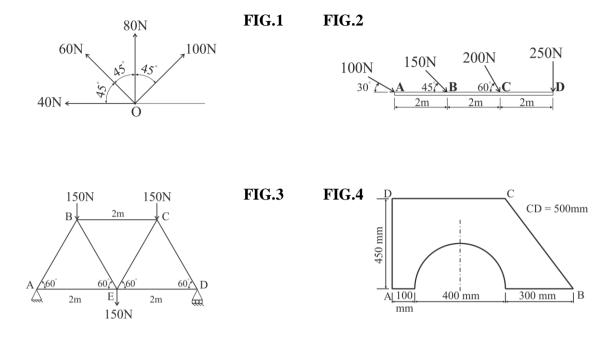
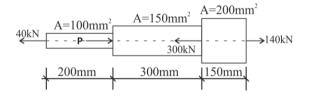
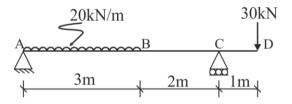




FIG.6

FIG.7
