07

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III EXAMINATION – WINTER 2015

Subject Code:130504 **Subject Name: Process Calculation Time: 2:30pm to 5:30pm**

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Atomic Weight: C=12, H=1, O=16, Cl=35.5, N=14, S=32

Q.1 (a) Vapor pressure of benzene in the temperature range of 7.5° C to 104° C can be 07 calculated using the following Antoine equation.

$$log_{10}P = 6.9057 - \frac{1211.0}{(t+220.8)}$$

Where P= Vapor Pressure in Torr

t= temperature in °C

Convert the above equation in SI Units

- (b) 1. The volumetric flow rate of kerosene in an 80mm nominal diameter pipe is 07 7.5 imperial gallons per minute. Taking the density of kerosene as 0.8 kg/dm^3 . find the mass flow rate in kg/s. 2. 240 Btu/lb ° F = _____ J/gm K
- A vent Stream from ethylbenzene plant has a composition: 66% H₂, 33% CH₄ 0.2 07 (a) and 1 % other components. It is passed through a pressure swing adsorption unit where hydrogen is recovered as 98% pure stream with 2 % CH₄ as an impurity. Recovery of hydrogen is 85% at a feed pressure of 50 bar. Calculate the composition of reject stream.
 - (b) Explain in brief bypass, recycle and purge operation. 07
 - OR
 - The feed water to the reverse osmosis plant has dissolved solids to the extent of 07 **(b)** 5000 mg/L. The feed to product ratio (on mass basis) is 4:3. The treated water (Product) from the plant contains 600 mg/L of solids. Find the dissolved solids in the reject streams.
- Derive the energy balance equation for steady state flow process of an 07 Q.3 (a) incompressible fluid.
 - The orsat analysis of the flue gases from a boiler house chimney gives CO₂: 07 **(b)** 11.4%, O₂: 4.2%, and H₂:84.4 % (mole%). Assuming that complete combustion has taken place, (a) Calculate the % excess air and (b) find C: H ratio in the fuel.

OR

(a) Write a short note on Proximate analysis of Coal. Q.3

Total Marks: 70

Date:23/12/2015

Enrolment No.

- (b) Chlorobenzene is nitrated using a mixture of nitric acid and sulphuric acid. 07 During the pilot studies, a charge consisted of 100 kg of chlorobenzene, 106.5 kg of 65.5% (by mass) nitric acid, and 108 kg of 93.6% (by mass) sulphuric acid. After two hours of operation, the final mixture was analyzed. It was found that the final product contained 2% unreacted chlorobenzene. Also, the product distribution was found to be 66 % p-nitrochlorobenzene and 34% O-nitrochlorobenzene. Calculate
 - (a) The analysis of charge
 - (b) The % conversion of chlorobenzene and
 - (c) The composition of the product mixture.
- Q.4 (a) A mass of 1 kg of carbon dioxide occupies a volume of 33 L at 27 °C. Using the 07 van der Waals equation of state, calculate the pressure. Data for CO₂: take a=3.6 $[(m^3)^2 kPa]/[kmol]^2$, and b = 4.3*10⁻² m³/kmol
 - (b) An aqueous solution of acetic acid of 35% concentration (by mass) has a density of 1.04 kg/L at 25 °C. Find the molarity, normality and molality of the solution.

OR

- Q.4 (a) Glycerin, weighing 600 mg, is dissolved in pure water to make a final solutionO7 of 1 liter. Find the TOC and ThOD of the solution.
 - (b) A gas mixture has the following composition by volume:

Component	% Composition (by
	vol)
Ethylene	30.6
Benzene	24.5
Oxygen	1.3
Methane	15.5
Ethane	25.0
Nitrogen	3.1

Find (1) The average molar mass of the gas mixture (2) The composition by mass & (3) The density of the mixture in kg/m^3 at NTP

- **Q.5** (a) Explain the classification of fuels.
 - (b) Chlorinated Diphenyl (Diphyl A-30) is heated from 40 ° C to 280 °C at the rate of 4000 kg/h in an indirectly fired heater. In this particular temperature range, the heat capacity of the fluid is given by the equation
 C₁ = 0.7511 + 1.465 * 10⁻³T kJ/kg K
 Where T is in K.
 Calculate the heat to be supplied to the fluid in the heater.

OR

- Q.5 (a) Explain the followings terms:
 - 1. Standard heat of formation and Standard heat of combustion
 - 2. Sensible heat and latent heat

07

07

07

(b) Obtain an expression relating the heat of reaction and the temperature of the 07 reaction

 $SO_{2(g)} + (1/2)O_{2(g)} = SO_{3(g)}$

Using the same expression, calculate the heat of reaction at 502 $^{\circ}$ C Following data for C_P:

Component	a	b*10 ³	c*10 ⁶	d*10 ⁹
SO ₃	22.036	121.624	-91.867	24.369
SO ₂	24.771	62.948	-44.258	11.122
O ₂	26.026	11.755	-2.343	-0.562

Standard heat of formation for SO_3 and SO_2 are -395720 and -296810 kJ/kmol respectively.
