GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III EXAMINATION - WINTER 2015

Subj	ect (Date:29/12/2015	
Subjection Time Instru	: 2:	Total Marks: 70	
	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	Convert the following Hexadecimal numbers to Octal (a) 4F7.A8 (b) BC70.OE (c) 42FD	06
	(b)		08
Q.2	(a)	Minimize the following multiple output functions using K-Map (i) $F1 = \sum m = (0,2,6,10,11,12,13) + d(3,4,5,14,15)$ (ii) $F2 = \pi M(0,4,9,10,11,14,15)$	07
	(b)	Describe briefly TTL fanin, fanout & noise margin with suitable sketches	07
	(b)	OR Design a combinational circuit whose input is a four bit number & whose output is the 2's complement of the input number	07
Q.3	(a)	6 6	07
	(b)	explain why they are called as universal gates Explain error detecting & correcting codes with the help of a suitable example. OR	07
Q.3	(a) (b)	Explain excess -3 code & gray code	07 07
Q.4	(a)	Convert the following to other canonical form (i) $F(x,y,z) = \sum (1,3,7)$ (ii) $F(A,B,C,D) = \pi (0,1,2,3,4,6,12)$	07

	(b)	Implement combinational logic using 8:1line MUX for $F(A,B,C,D) = \sum m(0,2,4,5,7,9,12,15)$	07
Q.4 Q.4	(a) (b)	OR Draw & explain the operation of 4 bit binary parallel adder Draw the logic diagram of 3 to 8 line decoder. Explain its operation with truth table	07 07
Q.5	(a)	State & explain any four operating characteristics of a flip flop	07
	(b)	1	07
Q.5	(a)	Explain arithmetic micro operations with the help of a block diagram	07
	(b)		07
