Seat No.:	Enrolment No.
	Emonient 1101

Subject Name: Transport Phenomena in materials processing

Subject Code: 142101

Time: 02:30pm to 05:00pm

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV EXAMINATION - WINTER 2015

Date: 22/12/2015

Total Marks: 70

Iı	nstruc	tions:	
		 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 	
Q.1	(a)	What is heat transfer? Write types of heat transfer. Why study of Heat transfer is useful in metallurgical processes?	07
	(b)	State laws of conservation of mass and derive equation of continuity	07
Q.2	(a)	Define fluid and viscosity. State Newton's law of viscosity, explain dynamic and kinematic viscosity and classify fluids	07
	(b)	What is Mass Transfer? Explain following terms: Mass Concentration, Molar Concentration, Mass Fraction, Molar Fraction OR	07
	(b)	Derive an expression for the terminal velocity of a solid sphere falling through a liquid following Stoke's law.	07
Q.3	(a) (b)	Explain steady state heat conduction through composite walls A wall of 0.5mm thickness is constructed using a material which has thermal conductivity of 1.4W / m-K. The wall is insulated with a material having K= 0.35W/m-K. So that heat loss per m2 is 1500 W. Inner & Outer surface are at temperatures of 1000 °C & 100 °C. Calculate the thickness of insulation required and temperature of the interface between two layers.	07 07
		OR	
Q.3	(a) (b)	Explain Fourier's law of heat conduction and define thermal Conductivity (k). Derive generalized equation of heat conduction in rectangular, cylindrical and spherical co-ordinates.	07 07
Q.4	(a) (b)	What is dimensionless Analysis? Explain the significance of it. Air at 30 $^{\circ}$ C is flowing across a tube with a velocity of 25 m/s. the tube is circular cylinder with diameter 5 cm. the tube surface temperature is 124 $^{\circ}$ C. calculate the rate of heat flow. Consider the correlation NuD = 0.027 Re D ^{0.805} Pr ^{0.33} . At 77 $^{\circ}$ C the properties of Air are: U = 20.92 \times 10 ⁻⁶ M ² /Sec, K= 3 \times 10 ⁻² w/mk, and Pr=0.7	07 07
		OR	
Q.4	(a)	What do you mean by convective heat transfer? Explain mechanism of convective heat transfer	07
	(b)	Explain Plank's Law, Kirchoff's and Stefan Boltzman Law	07
Q.5	(a)	Explain following terms: Gray Body, White Body, Black Body, Emissive Power, Emissivity	07
	(b)	Discuss Black body radiation & lambert's law	07

Q.5 (a) Explain Fick's laws of Diffusion and define Diffusivity

- 07 07
- (b) Find out the heat transfer rate per unit area due to radiation between two infinitely long parallel planes. The first plane has an emissivity = 0.4 and I is maintained at 200°C. The emissivity of second plane is 0.2 and it is maintained at 30°C. Take $\sigma = 5.67 \times 10^{-8}$
