Seat No.: _____

Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-V EXAMINATION – WINTER 2015

Subject Code: 150103 Subject Name: Aircraft Structure II Time: 10:30am to 1:00pm

Date:08/12/2015

Total Marks: 70

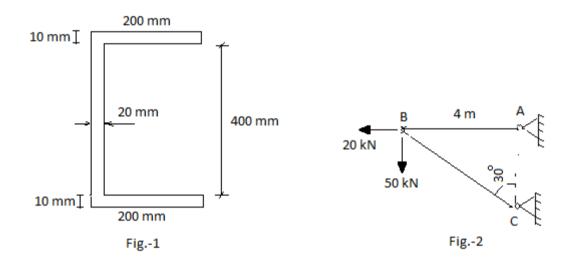
Instructions:

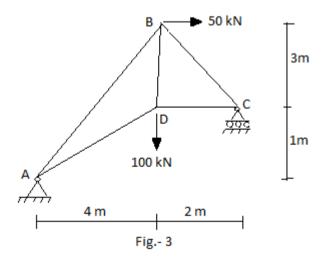
1. Attempt all questions.

2. Make suitable assumptions wherever necessary.

3. Figures to the right indicate full marks.

Q.1	(a)	For a material, the strain energy and complimentary strain energy are same. (linearly elastic, non-linear elastic, plastic)	02
	(b)	Which of the following method is most suitable for computer programming? (stiffness matrix method, flexibility matrix method, energy methods)	02
	(c)	Action required to produce unit displacement is referred as (strain energy, flexibility, stiffness).	02
	(d)	The diagonal terms in a flexibility matrix are always $(>0, =0, <0)$	02
	(e)	The size of stiffness matrix is (SI x SI, KI x KI, KI x1, SI x1)	02
	(f)	If the external load is passing through, the section is free from torsion. (shear centre, centre of gravity, point of contraflexure)	02
	(g)	The thearom of least work is used for (Analysis of indeterminate st., Analysis of determinate st., Both)	02
Q.2	(a)	Expuilain Flight Envelope (V-n diagram) with the help of sketch.	07
	(b)	State and derive an equation of a Castiglione's displacement theorem $\Delta = \partial U/\partial$ F with usual notation.	07 07
		OR	
	(b)	State the difference between symmetrical and unsymmetrical bending by giving suitable example.	07
Q.3		For a section as shown in fig1, locate the neutral axis, the principal centroidal axis and the shearcentre.	14
		OR	
Q.3	(a)	At a point in a body subjected to a three dimensional forces, the state of stress is define as $\sigma_{xx} = 100 \text{ N/mm}^2$, $\sigma_{yy} = -50 \text{ N/mm}^2$, $\sigma_{zz} = -50 \text{ N/mm}^2$ and the shear stresses $T_{xy}=T_{yz}=T_{zx}=75 \text{ N/mm}^2$. Compute the normal, Shearing and Resultant stresses on a plane that is equally inclined to all the three principal axes.	08
	(b)	Explain the criteria for obtaining the redundant structure for the analysis of indeterminate structure by giving suitable example.	06
Q.4	(a)	Find the internal forces in a truss member as shown in fig.2 by Stiffness Matrix Method. Consider cross-section area of all truss member $A=10000 \text{ mm}^2$ and $E=200 \text{kN/mm}^2$.	10
	(b)	Enlist the step to be follow in flexibility matrix method. OR	04
Q.4	(a)	A simply supported beam of 5m length is subjected to clockwise moment of 100 Kn-m at left end. Find the support displacement in beam using Stiffness matrix Method. Take $EI = 3 \times 10^7 \text{ kN-m}^2$.	07
	(b)	Analyze the fix beam of 6 m length subjected to u.d.l. of 20 kN/m throughout	07 1


its length using flexibility Matrix Method. Take $EI = 3 \times 10^7 \text{ kN-m}^2$. Also draw shear force and bending moment diagram.


- Q.5 (a) A propped cantilever beam of 6 m length is subjected to a point load 50 kN at the mid span. Find the support reaction using Theorem of Least Work. Consider EI as constant. Also plot bending moment diagram. Take EI = 3×10^7 kN-m².
 - (b) Solve same above example Q-5 a-) using Unit Load Method. Take $EI = 3 \times 10^7$ 07 kN-m².

OR

Q.5 Find the vertical and horizontal displacement at joint B for a plane truss as shown in fig.-3 using any suitable method of energy approach. Assume EA is constant for all truss members. Take A=10000 mm² and E=200kN/mm².
