GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-V EXAMINATION – WINTER 2015

Subject Code: 150104 Date:05/12/2 Subject Name: Computational Fluid Dynamics-I			
	ne: 1 ruction 1. 2. 3.	Attempt all questions.	
Q.1	(a) (b)	Explain predictor and corrector step of McCormack technique. Derive the momentum equations for the subsonic-supersonic isentropic nozzle.	07 07
Q.2	(a) (b)	Get the roots of unsteady, compressible, supersonic flow using Cramer's rule. Explain physical behavior of hyperbolic equations with the concept of characteristic lines.	07 07
	(b)	OR Write a short note on Relaxation Technique.	07
	(0)	write a short note on Kelaxation Technique.	07
Q.3	(a) (b)	Explain FVM for 1-D steady state diffusion. Explain FDM, FEM and FVM in brief.	07 07
Q.3	(a) (b)	OR Apply forward difference, backward difference and central difference to first order and 2 nd order simple partial derivatives. Explain the need of CFD software compared to wind tunnels.	07 07
Q.4	(b) (a)	Transform the Laplace equation from (x,y) plane to (ξ,η) plane.	07 07
۰.پ	(a) (b)	Define substantial derivative and partial derivative. Derive the expression for the substantial derivative.	07 07
Q.4	(a) (b)	OR Write a brief on adaptive grid and stretched grid. Derive the differential equation for unsteady 1-D heat conduction equation. Also define the accurate solution and precise solution.	07 07
Q.5	(a)	Differentiate between explicit approach and implicit approach for the solution of difference equations. Formulate the explicit form for 1-D heat conduction equation.	07
	(b)	Draw and explain the subsonic-supersonic flow through the C-D nozzle and also show the variation in properties along the length of nozzle.	07
Q.5	(a)	OR Write a short note on Physical boundary conditions for viscid and inviscid	07
	(b)	fluid flow Explain Lax Wendfroff method in detail.	07
