GUJARAT TECHNOLOGICAL UNIVERSITY

BE – SEMESTER – VI EXAMINATION – WINTER 2015

Su	bject	t Code:160202	Date:17/12/ 2015	
Su	bject	t Name: Automobile Heat Transfer		
		2:30pm to 5:00pm	Total Marks: 70	
Inst	ructio	ons: . Attempt all questions.		
	2.	Make suitable assumptions wherever necessary.Figures to the right indicate full marks.		
Q.1	(a)	What is Fourier's law of heat conduction and provide its ele the expression for critical thickness of insulation for sphere		07
	(b)	Derive an expression for the temperature distribution and he from a fin insulated at the tip.	eat dissipation	07
Q.2	(a)	What is Biot number? What is its significance? Is the B to larger for highly conducting solids or insulating ones?		07
	(b)	Pin fin is provided to increase the heat transfer rate from the following arrangement will give higher heat transfer (1) 6-fin of 10cm length (2) 12-fin of 5cm length Take k=200W/mK, h= 20W/m²-K, C/S, area of fin=4cm,Surrounding air temperature=30°C=ta	rate? Take $t_0=230^{\circ}$ C.	07
		OR		
	(b)	Define shape factor. What is the shape factor with respect is concave, convex or flat?	et to itself if the surface	07
Q.3	(a)	Explain the mechanism of convection heat transfer. Al forced convection.	lso explain natural and	07
	(b)	State and explain Wien's displacement law.		07
Q.3	(a)	OR Discuss the various regimes of boiling and explain the coof bubbles. What is the effect of bubble size on boiling?	ondition for the growth	07
	(b)	Show by dimensional analysis, show that for forced conv	vection, $Nu = \acute{Q}(Re,Pr)$.	07
Q.4	(a)	Briefly explain the significance of following dimensionless Reynolds number, Grashof number and Prandtl number.	numbers.	07
	(b)	Air flow over a plate (28 cm wide) with a velocity of of plate and air are 56°C and 20°C respectively. Of parameters at distance of 28cm from leading edge. The	Calculate the following	07

Q.4	(a)	a) What is the function of radiator in an automobile? Explain with a neat sketch construction of a radiator.		
	(b)	Write a short note on heat pipe stating principle of operation, types and applications.	07	
Q.5	(a)	Differentiate between followings: 1) Direct and non contact type heat exchanger 2) Recuperator and regenerator	07	
	(b)	Derive the relationship between effectiveness and number of transfer units for a counter flow heat exchanger. \mathbf{OR}	07	
Q.5	(a)	Derive the LMTD equation for parallel flow heat exchanger.	0′	
	(b)	In a counter flow heat exchanger, flue gases at 800° C (Cp=1.1kJ/kg k) with flow rate of 4kg/sec. The air on other side is flowing with 6kg/sec at 400° C inlet temperature and 551.5° C at outlet .Take U=100W/m²k. Determine (a) Heat transfer area needed (b) NTU	07	
