GUJARAT TECHNOLOGICAL UNIVERSITY

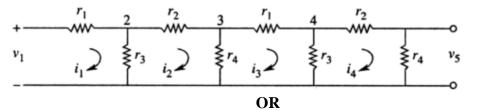
BE - SEMESTER - VI EXAMINATION - WINTER 2015

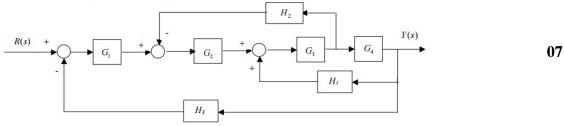
Subject Code:160304 Date:14/12/ 2015

Subject Name: Biomedical - Control Theory

Time:2:30pm to 5:00pm Total Marks: 70

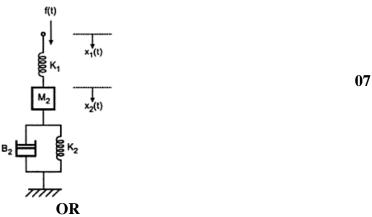
Instructions:


- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Explain the following terms: (1) Sensitivity, (2) Stability, (3) damping factor, (4) Bandwidth, (5) Oscillation, (6) Accuracy, (7) Settling time Ts
 - **(b)** How do you improve the system dynamics by feedback? Explain positive and negative feedback system with an example.
- **Q.2** (a) Describe the Laplace transform for three basic inputs with necessary diagrams and equation. Determine transfer function of the circuit given in figure.


07

07

(b) What is signal flow graph? Derive transfer function v5/v1 for the circuit given using SFG technique.



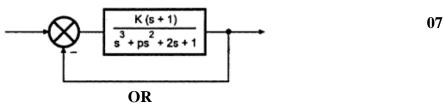
(b) Determine the transfer function of the following block diagram.

Q.3 (a) Define ' ξ '. Describe role of ξ in second order system.

(b) Explain force-voltage analogy. Draw the equivalent mechanical system and analogous system based on F-V and F-I methods for the given system.

07

07


07

07

- Q.3 (a) Explain underdamped, overdamped and critically damped systems.
 - Find the steady state error due to unit step, unit ramp and a parabolic input $(\frac{t^2}{2})$ u(t) for $G(s) = \frac{1}{s^2 + s + 2}$, $H(s) = \frac{1}{s + 1}$
- **Q.4** (a) What is the relation between type of the system and steady state error of the system?
 - (b) For a system with characteristic equation $F(s) = s^6 + 3s^5 + 4s^4 + 6s^3 + 5s^2 + 3s + 2 = 0$, examine stability.

OR

- Q.4 (a) Derive performance indices of the time domain system.
 - (b) Given system oscillates with frequency 2 rad/sec. Find values of 'Kmar' and 'p'. No poles are in R.H.S.

- Q.5 (a) The open loop transfer function of a feedback system is $G(s) H(s) = \frac{k}{s(s+4)(s^2+4s+20)}$.

 Draw the root locus plot and state about the stability of the system.
 - Draw the root locus plot and state about the stability of the system.

 (b) A unity feedback system has $G = \frac{k}{(s+4)(s+6)(s+10)}$. Find range of k so that system is stable.

OR

- Q.5 (a) For the system having the open loop transfer function $G(s) H(s) = \frac{10}{s(s+1)(s+10)}$.

 Determine the stability of the system by plotting the bode plot of the system.
 - (b) Derive an expression for the time response of a second order system subjected to a unit impulse for $\xi < 1$, $\xi > 1$.