GUJARAT TECHNOLOGICAL UNIVERSITY BE – SEMESTER – VI EXAMINATION – WINTER 2015

Subject Code:160505	Date:10/12/ 2015
Subject Name: Computer Aided Process Synthesis	
Time:2:30pm to 5:00pm	Total Marks: 70
Instructions:	

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Discuss design opportunities and steps in product and process design. 07
 - (b) Write a short note on threshold approach temperature and optimum approach 07 temperature for HENS.
- Q.2 (a) Discuss geometric concept of attainable region for reactor network design. 07
 - (b) Discuss heuristics for selection of separation methods.

OR

- (b) What are the residue curves? Draw the residue curves for a system containing octane, ethylbenzene and 2-ethoxyethanol with boiling point 398.8 K, 409.2 K and 408.1 K respectively. 2-ethoxyethanol makes binary azeotrope with octane and ethylbenzene at 389.1 K and 400.1K respectively.
- Q.3 (a) Find pinch point and minimum hot and cold utilities required for the following 07 system for $\Delta T_{min} = 10 \text{ }^{\circ}\text{C}$

Stream	T _{in} °C	Tout °C	FC _p kW/°C
C1	60	180	3
C2	30	100	2
H1	180	40	2
H2	150	40	4

(b) Discuss reactor designs used for handling large adiabatic changes in 07 temperature.

OR

- Q.3 (a) Discuss the role of computers in product and process design.
 - (b) Find minimum utility targets and pinch point for $\Delta T_{min}=20$ K using TI method 07 for heat exchanger network synthesis for the following streams.

Stream	T _{in} K	Tout K	FC _p kW/K
H1	430	340	15
C1	310	395	7
C2	370	460	32

- Q.4 (a) Draw the algorithm to establish the distillation column pressure and condenser 07 type.
 - (b) Discuss scope of heat and power integration in chemical process plant using the 07 concept of heat engine and heat pump.

OR

- Q.4 (a) Discuss mixed integer linear programming for heat exchanger network design. 07
 - (b) Discuss approach used by Linhof and Hindmarsh for stream matching at pinch. 07

07

07

- Q.5 (a) Products A, B, C are manufactured in three stages. The processing time for stage 1, 2 and 3 for product A are 5, 4 and 3 hr respectively, for product B are 3, 1 and 3 hr respectively and for product C are 4, 3 and 2 respectively. Assuming zero cleanup time, determine the span and cycle time for manufacturing of 2 batches of A,1 of B and 1 of C for (a) zero wait policy, (b)no intermediate storage policy and (c) unlimited intermediate storage policy.
 - (b) Discuss environmental issues and factors affecting the product and process 07 design.

OR

Q.5 (a) Rank the sequence to separate four components using marginal vapor rate 07 method with the following details.

Separation	Marginal vapor rate kmol/hr	Separation	Marginal vapor rate kmol/hr
A/B	0	ABC/D	613
A/BC	163	B/C	0
A/BCD	340	B/CD	277
AB/C	231	BC/D	385
AB/CD	435	C/D	0

(b) Define span and cycle time for batch processes. Explain various transfer 07 policies with example.
