GUJARAT TECHNOLOGICAL UNIVERSITY BE – SEMESTER – VI EXAMINATION – WINTER 2015

Subject Code:160804Date:14/12/20Subject Name: Electrical Machine DesignTotal Marks: 7Time:2:30pm to 5:00pmTotal Marks: 7			
INS	1. 2. 3.	ns: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	Deduce an expression for the M.M.F required for the air gap of an armature with slots and ducts.	07
	(b)	Describe the various methods of cooling of transformers.	07
Q.2	(a) (b)	What are the factors that limit the design of an electrical machine? Explain the design procedure in the design of field windings for a D.C. shunt machine.	07 07
		OR	
	(b)	An Induction motor is heated to temperature of 60° C and then is shut down and allowed to cool. Calculate its temperature at a time 20 minutes after the shutdown if the cooling time constant is 60 minutes. The ambient temperature is 30° C.	07
0.3	(a)	Derive the output equation of a single phase transformer.	07
2	(b)	Calculate the number of turns and the cross section area of a conductor for a 100 KVA, 11000/400 Volts, 50 Hz, single phase core type transformer. Use 1.6 A/mm ² as current density and 0.070 Wb as flux.	07
0.0		OR	
Q.3	(a)	A D.C. shunt Generator rated for 5 KW, 4 Pole, 1500 r.p.m. is to be designed for a square pole face from the following data. Specific Magnetic Loading Bav=0.45 Wb/m ² , Specific Electric Loading ac = 15000 Amp. Conductors/m, Full Load efficiency = 85 %, ratio α = Pole Arc / Pole Pitch = 0.67, For Square Pole, Core Length L (or Width) / Pole arc = 1. Calculate D and L of Machine.	07
	(b)	Explain various factors affecting selection of Numbers of armature slots for D.C. machine.	07
Q.4	(a) (b)	Explain the Real and Apparent flux densities. Determine the core and yoke dimensions for a 200 KVA, 50 Hz, 6600/400 Volts, 3-Phase core type transformer, with the following data is given. Maximum flux density = 1.3 Wb/m^2 , Current density = 2.5 Amp/mm^2 , Window Space factor = 0.3 , Voltage per turn = 10 Volts , Height of Window = 3 times width of the window, Stacking factor = 0.9 and a three stepped core is used.	07 07
		OR	_
Q.4	(a)	Derive output equation of $3 - \Phi$ Transformer. Also Prove that $E_t = K \sqrt{Q}$	07

(b) Explain radial and axial ventilation with the help of sketches. Give the advantages of hydrogen cooling in alternators.

Q.5	(a)	Define specific magnetic loading (Bav) and specific electric loading (ac)	07
		and obtain an expression for the "output co-efficient" for a D.C. machine.	

(b) Discuss the factors that determine the choice of air-gap in induction motor. 07

OR

- Q.5 (a) What are the important considerations in choosing number of poles in D.C. 07 machine?
 - (b) Derive the condition for the optimum design of transformer for the minimum 07 cost and minimum losses.

07