Seat No.:	Enrolment No

Subject Code: 170501

Instructions:

Time: 10:30am to 1:00pm

1. Attempt all questions.

Subject Name: Chemical Reaction Engineering-I

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII EXAMINATION - WINTER 2015

Date: 12/12/2015

Total Marks: 70

		Make suitable assumptions vFigures to the right indicate		essary.						
Q.1	(a) (b)	Define 'Recycle ratio' and derive the performance equation for recycle reactor. Explain the mechanism of various kinds with example for non elementary reaction. 0								
Q.2	(a)	Determine the order of reaction and rate constant for $A \rightarrow B$ using following data. Take initial concentration of reactant = 1 mol/lit.								
		Time, min 0.02	0.06	0.1	0.14	0.2				
		% 5	15	25	35	50				
		conversion								
	(b)	Discuss the Integral method of analysis for irreversible elementary reactions in parallel.								
		OR								
	(b)	Find the conversion after 1 hour in a batch reactor for $A \rightarrow R$, $-r_A = 3C_A^{0.5}$ mol/lit*hr, $C_{Ao} = 1$ mol/lit.								
Q.3	(a) (b)	1								
Q.3	(a)									
Q.C	(4)	(i) Space time (ii) Space velocity (iii) Activation energy (iv) Rate constant								
	(b)									
Q.4	(a)	Explain the procedure to determine the best system of mixed flow reactors of								
7. 7	(a)	different sizes in series for a given conversion.								
	(b) Discuss the conclusions which may be drawn from thermodynamics for che reaction.									
			0	R						
Q.4	(a)									
	(b)	Differentiate between (i) Homogeneous reaction and Heterogeneous reaction (ii) Elementary reaction and Non elementary reaction								
							1			

- **Q.5** (a) Derive the expression for $A+B\to Product$ by applying Integral method of analysis. Take $C_{Ao}\neq C_{Bo}$.
 - (b) Given a dilute aqueous feed, $C_{Ao} = C_{Bo} = 100$, $A + 2B \rightarrow R + S$, $C_A = 20$. Find X_A and X_B .

OR

- Q.5 (a) Discuss the product distribution for the following reaction qualitatively. 07 $A \xrightarrow{k1} R \xrightarrow{k2} S$
 - (b) Draw the concentration profile for following reaction: (i) $A \xrightarrow{1} R \xrightarrow{1} S$ (ii) $A \xrightarrow{1} R \xrightarrow{1} S$ (iii) $A \xrightarrow{1} R \xrightarrow{1} S$ (iv) $A \xrightarrow{1} R \xrightarrow{1} S$
 - (v) $A \underset{1 \leftarrow S}{ \swarrow} R$
