Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VII EXAMINATION – WINTER 2015

Subject Code: 170506Date:04/Subject Name: Biochemical Engineering			12/2015	
Time: 10:30am to 1:00pm Total Marks: 7 Instructions:			:: 70	
	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a)	Briefly compare prokaryotic cells with eukaryotic cells in terms of internal structure and functions. Take any example from prokaryotes and discuss its salient features.	04+03	
	(b)		07	
Q.2	(a)	Discuss various steps of nitrogen cycle in the environment with chemical reactions. What is its importance?	07	
	(b)	Explain with a diagram different phases of microbial growth. State and explain various methods of estimation of cell growth. OR	07	
	(b)	Aerobic degradation of benzoic acid by a mixed culture of organisms can be represented by the following reaction: $C_6H_5COOH + aO_2 + bNH_3 \longrightarrow c C_5H_7NO_2 + dH_2O + eCO_2$ (substrate) (bacteria) i) Determine a,b,c,d and e if RQ = 0.9 ii) Determine the yield coefficients, $Y_{x/s}$ and $Y_{x/O2}$	07	
Q.3	(a)	Explain 'Lock and Key' and 'Induced fit Model' of enzyme-substrate complex formation hypothesis.	07	
	(b)	Classify enzymes with examples. Explain different types of Enzyme Inhibition	07	
Q.3	(a)	OR Explain different methods of enzyme immobilization with rough	07	
Q.5	(a)	diagrams. What are the advantages of enzyme immobilization?	07	
	(b)	Discuss primary, secondary and tertiary structure of protein. Give examples of various biological functions of protein.	07	
Q.4	(a)	Derive the design equation for the continuous stirred tank fermenter in series.	07	
	(b)	State the advantages and disadvantages of the continuous culture. OR	07	
Q.4	(a)	Discuss the production of Single cell protein with a diagram. State the uses of single cell protein.	07	
	(h)	Discuss anaerobic direction and biodegradation in context with	07	

(b) Discuss anaerobic digestion and biodegradation in context with 07 biological waste water treatment.

- **Q.5** (a) Discuss the production of lactic acid with a flow diagram. State the applications of lactic acid.
 - (b) Give examples (one each) of the following: (i) Transport protein (ii) 07
 Disaccharide (iii) Polysaccharide (iv) Unsaturated fatty acid (v) cofactor (vi) Coenzyme (vii) Information biomolecule.

OR

Q.5 (a) A particular organism follows substrate-inhibited kinetic growth equation of Edwards as given below. The symbols are of usual meaning.

$$\mu = \frac{\mu_m s}{K_s + s + \frac{s^2}{K_I}}$$

The kinetic parameters are (μ_m) 0.25 h⁻¹; K_s 2 g/L; and K_I = 1.35 g/L. Determine the value of substrate concentration at which the specific growth rate is maximum.

(b) A generalized form of the logistic equation is proposed by Konak:

07

07

$$\frac{1}{N_{\infty}^{a+b}}\frac{dN}{dt} = k(\frac{N}{N_{\infty}})^{a}(1-\frac{N}{N_{\infty}})^{b}$$

Where, N_{∞} = stationary phase population

a,b, = constant

$$N = cell mass$$

Show that the maximum growth rate occurs at $N/N_{\infty} = a/(a+b)$ and that its value is given by

$$\left. \frac{\mathrm{dN}}{\mathrm{dt}} \right|_{\mathrm{max}} = \frac{\mathrm{kN}_{\infty}^{a+b} a^{a} b^{b}}{\left(a+b\right)^{a+b}}$$
