Subject Code: 172007 Subject Name: Modern Control System Time: 10:30am to 1:00pm

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1(a) Discuss the compensation characteristic of cascade lead compensator.07(b) Explain the design procedure of cascade lag compensator.07
- Q.2 (a) Consider a unity feedback type-I system with open loop transfer function 07

$$G(s) = \frac{k}{s(s+2)}$$

It is desired to design a cascade lead compensator such that the dominant closed loop poles provide damping ratio=0.5 and undamped natural frequency=4 rad/sec.

(b) A unity feedback system with open loop transfer function

$$G(s) = \frac{k}{s^2(s+1.5)}$$

Design a suitable double lead cascade compensator to satisfy the following specification. Settling time =4 sec,Peak overshoot for step input=25%.

OR

- (b) Explain the design procedure of cascade lag-lead compensator. 07
- Q.3 (a) The uncompensated open-loop transfer function is

$$G(s) = \frac{k}{s(s+2)}$$

The system is to be compensated to meet the following specification. Damping ratio, $\xi = 0.707$

Settling time, ts \leq 5 sec

Velocity error constant, $kv \ge 4$. Design a suitable lag compensator.

(b) Consider a plant with transfer function
$$G(s) = \frac{4}{s(s+0.5)}$$

Design a lag-lead compensator to meet the following specification: 1.damping ratio=0.5 2.wn=5 rad/sec 3.kv=80 sec⁻¹

OR

		ŬK.	
Q.3	(a)	The uncompensated transfer function is given by	07
		$G(s) = \frac{k}{s(s+1)(s+4)}$	
		The specification of the system are as follows:	
		Damping ratio=0.5	

Damping ratio=0.5 Undamped natural frequency=2 rad/sec Velocity error constant Kv \geq 5 sec⁻¹.

Total Marks: 70

Enrolment No.

07

07

07

Design a suitable lag-lead compensator for the above system.

- (b) Explain the design procedure for a frequency response design of lead 07 compensator.
- Q.4 (a) The uncompensated system with an open loop transfer function is given by 07

 $G(s) = \frac{k}{s(s+1)}$

It is desired to have the velocity error constant Kv=10. Phase margin of the system=45

Design a suitable lead compensator for frequency response method.

(b) Explain the design procedure for a lag compensator design of frequency 07 response method.

OR

- Q.4 (a) Define the term: state, state variable, state vector and state space, eigen values, 07 eigen vector.
 - (b) Derive the state space representation of a series R-L-C circuit. 07
- Q.5 (a) Explain the transfer function decomposition. Obtain the cascade decomposition 07 with suitable example.
 - (b) Derive the solution of state equation by Laplace transform technique. 07

OR

- Q.5 (a) Briefly describe the configuration of a state feedback control design using pole 07 placement technique.
 - (b) Explain the term controllability. Derive the controllability of a system with the 07 help of controllability test matrix.
