Enrolment	No
-----------	----

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VII EXAMINATION – WINTER 2015

		Code: 172503 Date:09/12/202	15
	0	Name: Optimization Methods	70
	me:] tructio	0:30am to 1:00pm Total Marks:	/0
	1. 2. 3.		
Q.1	(a) (b)	Explain the process of LP formulation with suitable example Describe following with neat sketch (a) Unbounded region (b) feasible region (c) Infinite region	07 07
Q.2	(a)	The manager of an oil refinery has to decide on the optimal mix of two possible	07

Q.2 (a) The manager of an oil refinery has to decide on the optimal mix of two possible 07 blending processes. The inputs and the outputs per production run of the blending process are as follows

	Input		Output	
Process	Crude A	Crude B	Gasoline G ₁	Gasoline G ₂
1	5	3	5	8
2	4	5	4	4

The maximum amounts of availability of crude A and crude B are 200 units and 150 units, respectively. Market requirements show that at least 100 units of Gasoline G_1 and 80 units of Gasoline G_2 must be produced. The profits per production run from process 1 and process 2 are Rs.3 lacs and Rs. 4 lacs respectively. Formulate this problem as a LP model to determine the number of production runs of each process such that the total profit is maximized

	(b)	Solve the following problem, Using big M method	07
		Maximize $z=4x+5y$	
		Subject to $2x+3y \le 8$	
		3x+y≥4	
		x,y≥0	
		OR	
	(b)	Solve the following problem using simplex method	07
		Minimize $Z=2x+9y-4z$	
		Subject to $2x+3y+4z \le 16$	
		x+6y-4z≥16	
		x,y, z >0	
Q.3	(a)	Describe properties of Duality in detail with suitable example	07
	(b)	Construct the dual of the problem:	07
		Maximize $Z = 3x+5y$	
		Subject to X- $2y \ge 3$	
		$X + 3y \ge 9$	
		$X - y \le 5$	
		OR	

- Q.3 (a) There is congestion on the platform of Ahmed Railway station. The trains arrive 07 at the rate of 30 trains per day. The waiting time for any train to flag-off is exponentially distributed with an average of 36 minutes. Calculate the following:
 - i) The mean queue size.
 - ii) The probability that the queue size exceeds 10.

(b) Describe Kendall's notations of queuing in detail

Q.4 (a) Describe mathematical model of transportation in detail

(b) Solve the following transportation problem

(b)

	0				
Supply	S 1	S2	S 3	S 4	Total
Demand					
D1	12	25	08	16	250
D2	23	15	18	24	150
D3	18	14	12	22	400
D4	17	20	16	26	300
	350	500	150	100	1100

OR

Q.4 (a) Solve following assignment problem using hungerian method

Operator	P1	P2	P3	P4	P5
Job					
J1	46	54	67	78	47
J2	63	78	49	65	53
J3	62	35	68	47	63
J4	57	67	82	45	72
J5	77	64	55	69	70

Q.5	(a) (b)	What do you mean by saddle point? Explain with suitable example Explain algebraic method to solve the game problem with a case problem		
	(0)	OR	07	

Q.5(a) Describe the applications of waiting line simulation in detail07(b) Explain inventory model of simulation with suitable case problem07

07

07

07

07

07